Linguistic Mapping Exercises
Knowledge Checks
- Use Fermat’s theorem to determine all points at which each function \(f\) below can potentially attain a local maximum or a local minimum.
- \(f(x) = -4 x^2 + 4 x + 3\)
- \(f(x)=x^{2/3}+x\)
- Take \(f\) to be the function that is given by \(f(x) = -4 x^2 + 4 x + 3\). Determine the maximum and minimum values that \(f\) attains on \([0,2].\)
- Take \(f(x)=\tfrac{1}{4}x^2+\frac{1}{2}.\) This is a differentiable function on the interval \((-2, 1)\) and a continuous function on the interval \([-2,1].\)
- Find a value \(M\) so that \(|f'(x)|\leq M\) for all \(x\) in \([-2,1].\)
- Given that \(f(-2)=\tfrac{3}{2}\), find the smallest range of values that is guaranteed to contain \(f([-2, 1])\) and sketch the smallest region that you can that is guaranteed to contain \(f\). Then compare it to the graph of \(f\).
- Given that \(f(-2)=\tfrac{3}{2}\) and \(f(1)=\tfrac{3}{4}\), find the smallest range of values that is guaranteed to contain \(f([-2, 1])\) and sketch the smallest region that you can that is guaranteed to contain \(f\). Then compare it to the graph of \(f\).
- Take \(f\) and \(g\) to be differentiable functions on the interval \([1,9]\) so that \(f(2)=4\), \(g(2)=8\), and that for any \(x\) in \((1,9),\) \[f'(x)-g'(x)=0.\] Determine \(g(9)-f(9).\)
- For each function \(f\) that is given below, determine the antiderivative of \(f:\)
- \(f(x) = 20x^3 + e^x +2^{x}+ 4\cos(x)\)
- \(f(x) = \frac{3}{x}+\frac{40}{x^2+1} - \ln(2)\sqrt{x}+2\)
- Take \(f\) to be the function with the property that \[\int f(x)\,\mathrm{d}x=\sin(x)+\tan(x)+2x^3+C.\] Identify the function \(f\).
- Calculate the following:
- \(\displaystyle\int_{1}^2x^5\,\mathrm{d}x\)
- \(\displaystyle\int_{0}^1 ( 20x^3 + e^x +2^{x}+ 4\cos(x))\,\mathrm{d}x\)
- Determine the following.
- \(\displaystyle \int 4x^3\sin(x^4)\,{\rm d}x\)
- \(\displaystyle \int (40x^3+x)\sqrt{20x^4+x^2+1}\,{\rm d}x\)
- \(\displaystyle \int \frac{e^x+\ln(2)2^x}{e^x +2^x}\,{\rm d}x\)
- Use the fact that \[(x\cos(x))'=\cos(x)-x\sin(x)\] to determine \[\int x\sin(x)\,\mathrm{d}x.\]
- Verify that the following are of indeterminate forms and use L’Hospital’s rule to determine the given limits:
- \(\displaystyle \lim_{x\to 5}\frac{x^3 - 24 x - 5}{x-5}\)
- \(\displaystyle \lim_{x\to \infty}\left(\sqrt{4x^2+3x +1} -2x\right)\)
- \(\displaystyle \lim_{x\to \infty} \frac{x^3}{{\rm e}^x}\)