Dr. Bryan Carrillo’s The Principles of Calculus Website
  • Home
  • About
  • Course Schedule
    • Math 2 Spring 2025 In-Person Schedule
    • Math 3A Spring 2025 In-Person Schedule
  • Course Content
  • Demonstration Questions

On this page

  • Notes
  • Linguistic Mapping Exercises
  • Knowledge Checks
  • Practice Problems
  • Return

Chapter 4 Section 2

Notes

  • Notes

Linguistic Mapping Exercises

  • Linguistic Mapping Exercises PDF

Knowledge Checks

  1. Identify the amplitude, fundamental period and phase shift of the following functions: \[f(x)=-\sin(\pi x+3)-1.\]
  2. Take \(f\) to be a function with fundamental period equal to \(\frac{1}{2}\) and take \(g\) to be given by \[g(x) = 7x + \pi.\] Determine the fundamental period of \(f\circ g\).
  3. Graph the following function and identify the fundamental period, amplitude, domain and range. \[f(x)=-\sin(\pi x+3)-1.\]
  4. Calculate the following.
    1. \(\cot\left(\frac{7\pi}{6}\right)\)
    2. \(\csc(\theta)\) given that \(\sin(\theta)=-\frac{1}{9}\)
    3. \(\arccos\left(-\frac{\sqrt{3}}{2}\right)\)
    4. \(\arcsin\left(-\frac{\sqrt{3}}{2}\right)\)
    5. \(\arctan\left(-\sqrt{3}\right)\)
  5. Calculate the following.
    1. \(\arccos\left(\cos\left(\frac{5\pi}{7}\right)\right)\)
    2. \(\arcsin\left(\sin\left(\frac{3\pi}{4}\right)\right)\)
    3. \(\arctan\left(\tan\left(\frac{5\pi}{3}\right)\right)\)
    4. \(\sin\left(\arctan\left(\frac{3}{5}\right)\right)\)
  6. Solve the following equations.
    1. \(\cos(x)=-\frac{\sqrt{2}}{2}\) on \([0,2\pi)\)
    2. \(5 \sin(x)-\frac{5}{2}=0\) on \(\mathbb{R}\)
    3. \(\cos^2(\theta) + \frac{3}{2}\cos(\theta) - 1=0\) on \(\mathbb{R}\)
    4. \(\tan(x)-\frac{2}{3}=0\) on \(\mathbb{R}\)
    5. \(\cos(x)=-1.1\)
  7. A point \(\left(x,-\frac{3}{5}\right)\) on the unit circle corresponds to an angle \(\theta\) in quadrant III. Calculate \[\sin(\theta),\quad \cos(\theta),\quad \tan(\theta),\quad \csc(\theta),\quad \cot(\theta)\quad \text{and} \quad\sec(\theta).\]
  • Knowledge Checks PDF
  • Knowledge Checks Solutions

Remember, do the knowledge checks before checking the solutions.

Practice Problems

  • Practice Problems

Return

  • Return

© Copyright 2025 by the POC Writing Team: Bryan Carrillo, Yat Sun Poon, and David Weisbart. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the POC Writing Team.