Dr. Bryan Carrillo’s The Principles of Calculus Website
  • Home
  • About
  • Course Schedule
    • Math 2 Spring 2025 In-Person Schedule
    • Math 3A Spring 2025 In-Person Schedule
  • Course Content
  • Demonstration Questions

On this page

  • Questions
  • Answers
  • Return

Chapter 4.2 Practice

Questions

  1. Identify the amplitude of the following functions.
    1. \(f(x)=\sin(x)\)
    2. \(f(x)=\cos(x)\)
    3. \(f(x)=-\sin(x)+4\)
    4. \(f(x)=5\sin(2x)\)
    5. \(f(x)=-2\cos(x+\pi)-1\)
  2. Determine the fundamental period of the following functions.
    1. \(f(x)=\sin(x)\)
    2. \(f(x)=\cos(x)\)
    3. \(f(x)=\tan(x)\)
    4. \(f(x)=2\sin(x+1)\)
    5. \(f(x)=\cos(\pi x)-1\)
    6. \(f(x)=2\tan(4x)\)
    7. \(f(x)=2\sin(2x-5)+1\)
    8. \(f(x)=3\cos(2\pi x)+1\)
    9. \(f(x)=\tan(\pi x+1)\)
  3. Take \(f\) to be a function with fundamental period equal to \(6\pi\) and take \(g\) to be given by \[g(x) = 4x - 5.\] Determine the fundamental period of \(f\circ g\).
  4. The sketch of a periodic function \(f\) is given below. Identify its fundamental period.

  1. Determine the phase shift of the following functions.
    1. \(f(x)=\sin(x)\)
    2. \(f(x)=\cos(x)\)
    3. \(f(x)=\sin(x-2)\)
    4. \(f(x)=\cos(2x+1)\)
  2. Graph the following functions. Identify the fundamental period, amplitude, domain and range.
    1. \(f(x)=3\sin\left(x-\frac{\pi}{2}\right)\)
    2. \(f(x)=4\cos(2\pi x-1)+2\)
  3. Whenever possible, evaluate the function \(\csc\), \(\sec\) and \(\cot\) at the angles measured in radians.
    1. \(0\)
    2. \(\frac{\pi}{6}\)
    3. \(\frac{\pi}{4}\)
    4. \(\frac{\pi}{3}\)
    5. \(\frac{\pi}{2}\)
    6. \(\frac{2\pi}{3}\)
    7. \(\frac{3\pi}{4}\)
    8. \(\frac{5\pi}{6}\)
    9. \(\pi\)
    10. \(\frac{7\pi}{6}\)
    11. \(\frac{5\pi}{4}\)
    12. \(\frac{4\pi}{3}\)
    13. \(\frac{3\pi}{2}\)
    14. \(\frac{5\pi}{3}\)
    15. \(\frac{7\pi}{4}\)
    16. \(\frac{11\pi}{6}\)
    17. \(2\pi\)
  4. Whenever possible, evaluate the function \(\csc\), \(\sec\) and \(\cot\) at the angles measured in degrees.
    1. \(0^{\circ}\)
    2. \(30^{\circ}\)
    3. \(45^{\circ}\)
    4. \(60^{\circ}\)
    5. \(90^{\circ}\)
    6. \(120^{\circ}\)
    7. \(135^{\circ}\)
    8. \(150^{\circ}\)
    9. \(180^{\circ}\)
    10. \(210^{\circ}\)
    11. \(225^{\circ}\)
    12. \(240^{\circ}\)
    13. \(270^{\circ}\)
    14. \(300^{\circ}\)
    15. \(315^{\circ}\)
    16. \(330^{\circ}\)
    17. \(360^{\circ}\)
  5. Evaluate the function \(\arcsin\) and \(\arccos\) at the given values.
    1. \(-1\)
    2. \(-\frac{\sqrt{3}}{2}\)
    3. \(-\frac{\sqrt{2}}{2}\)
    4. \(-\frac{1}{2}\)
    5. \(0\)
    6. \(\frac{1}{2}\)
    7. \(\frac{\sqrt{2}}{2}\)
    8. \(\frac{\sqrt{3}}{2}\)
    9. \(1\)
  6. Evaluate the function \(\arctan\) at the given values.
    1. \(-\sqrt{3}\)
    2. \(-1\)
    3. \(-\frac{1}{\sqrt{3}}\)
    4. \(0\)
    5. \(\frac{1}{\sqrt{3}}\)
    6. \(1\)
    7. \(\sqrt{3}\)
  7. Calculate the following.
    1. \(\arcsin\left(\sin\left(-\frac{\pi}{3}\right)\right)\)
    2. \(\arctan\left(\tan\left(\frac{\pi}{5}\right)\right)\)
    3. \(\arccos\left(\cos\left(\frac{\pi}{15}\right)\right)\)
    4. \(\sin\left(\arcsin\left(\frac{1}{2}\right)\right)\)
    5. \(\cos\left(\arccos\left(-\frac{1}{3}\right)\right)\)
    6. \(\tan\left(\arctan\left(\sqrt{3}\right)\right)\)
    7. \(\arccos\left(\cos\left(\frac{7\pi}{5}\right)\right)\)
    8. \(\arcsin\left(\sin\left(\frac{5\pi}{7}\right)\right)\)
    9. \(\arctan\left(\tan\left(\frac{9\pi}{5}\right)\right)\)
  8. Calculate the following.
    1. \(\cos\left(\arctan\left(\frac{2}{7}\right)\right)\)
    2. \(\sin\left(\arccos\left(-\frac{5}{9}\right)\right)\)
    3. \(\tan\left(\arcsin\left(\frac{1}{11}\right)\right)\)
  9. Solve the following equations.
    1. \(\cos(x)=\frac{1}{2}\) on \([0,2\pi)\)
    2. \(\cos^2(x)-\frac{1}{4}=0\) on \(\mathbb{R}\)
    3. \(\sin(x)-1=0\) on \([0,2\pi)\)
    4. \(3\cos(x)-3=0\) on \(\mathbb{R}\)
    5. \(\sqrt{3}\tan(x)=0\) on \([0,2\pi)\)
    6. \(\tan(x)+\sqrt{3}=0\) on \(\mathbb{R}\)
    7. \(\cos^2(\theta)+\cos(\theta)-\frac{3}{4}=0\) on \(\mathbb{R}\)
    8. \(\cos(x)-\frac{1}{3}=0\) on \(\mathbb{R}\)
    9. \(\sin(x)=0.45\) on \(\mathbb{R}\)
    10. \(\sin(x)=5\)
    11. \(\cos(5x)=\frac{1}{2}\) on \(\mathbb{R}\)
  10. A point \(\left(x,-\frac{6}{11}\right)\) on the unit circle corresponds to an angle \(\theta\) in quadrant III. Calculate \[\sin(\theta),\quad \cos(\theta),\quad \tan(\theta),\quad \csc(\theta),\quad \cot(\theta)\quad \text{and} \quad\sec(\theta).\]

Answers

    1. \(1\)
    2. \(1\)
    3. \(1\)
    4. \(5\)
    5. \(-2\)
    1. \(2\pi\)
    2. \(2\pi\)
    3. \(\pi\)
    4. \(\pi\)
    5. \(2\)
    6. \(\frac{\pi}{4}\)
    7. \(\pi\)
    8. \(1\)
    9. \(1\)
  1. \(\frac{3\pi}{2}\)
  2. \(4\)
    1. \(0\)
    2. \(0\)
    3. \(\frac{1}{\pi}\)
    4. \(-\frac{1}{2\pi}\)
    1. The fundamental period is \(2\pi\), amplitude is \(3\), domain is \(\mathbb{R}\) and the range is \([-3,3]\). The graph of \(f\) is given below.
    2. The fundamental period is \(1\), amplitude is \(4\), domain is \(\mathbb{R}\) and the range is \([-2,6]\). The graph of \(f\) is given below.
    1. \(\sec(0)=1\)
    2. \(\csc\left(\frac{\pi}{6}\right)=2\), \(\sec\left(\frac{\pi}{6}\right)=\frac{2}{\sqrt{3}}\), \(\cot\left(\frac{\pi}{6}\right)=\sqrt{3}\)
    3. \(\csc\left(\frac{\pi}{4}\right)=\sqrt{2}\), \(\sec\left(\frac{\pi}{4}\right)=\sqrt{2}\), \(\cot\left(\frac{\pi}{4}\right)=1\)
    4. \(\csc\left(\frac{\pi}{3}\right)=\frac{2}{\sqrt{3}}\), \(\sec\left(\frac{\pi}{3}\right)=2\), \(\cot\left(\frac{\pi}{3}\right)=\frac{1}{\sqrt{3}}\)
    5. \(\csc\left(\frac{\pi}{2}\right)=1\), \(\cot\left(\frac{\pi}{2}\right)=0\)
    6. \(\csc\left(\frac{2\pi}{3}\right)=\frac{2}{\sqrt{3}}\), \(\sec\left(\frac{2\pi}{3}\right)=2\), \(\cot\left(\frac{2\pi}{3}\right)=-\frac{1}{\sqrt{3}}\)
    7. \(\csc\left(\frac{3\pi}{4}\right)=\sqrt{2}\), \(\sec\left(\frac{3\pi}{4}\right)=-\sqrt{2}\), \(\cot\left(\frac{3\pi}{4}\right)=-1\)
    8. \(\csc\left(\frac{5\pi}{6}\right)=2\), \(\sec\left(\frac{5\pi}{6}\right)=-\frac{2}{\sqrt{3}}\), \(\cot\left(\frac{5\pi}{6}\right)=-\sqrt{3}\)
    9. \(\sec(\pi)=-1\)
    10. \(\csc\left(\frac{7\pi}{6}\right)=-2\), \(\sec\left(\frac{7\pi}{6}\right)=-\frac{2}{\sqrt{3}}\), \(\cot\left(\frac{7\pi}{6}\right)=\sqrt{3}\)
    11. \(\csc\left(\frac{5\pi}{4}\right)=-\sqrt{2}\), \(\sec\left(\frac{5\pi}{4}\right)=-\sqrt{2}\), \(\cot\left(\frac{5\pi}{4}\right)=1\)
    12. \(\csc\left(\frac{4\pi}{3}\right)=-\frac{2}{\sqrt{3}}\), \(\sec\left(\frac{4\pi}{3}\right)=-2\), \(\cot\left(\frac{4\pi}{3}\right)=\frac{1}{\sqrt{3}}\)
    13. \(\csc\left(\frac{3\pi}{2}\right)=-1\), \(\cot\left(\frac{3\pi}{2}\right)=0\)
    14. \(\csc\left(\frac{5\pi}{3}\right)=-\frac{2}{\sqrt{3}}\), \(\sec\left(\frac{5\pi}{3}\right)=2\), \(\cot\left(\frac{5\pi}{3}\right)=-\frac{1}{\sqrt{3}}\)
    15. \(\csc\left(\frac{7\pi}{4}\right)=-\sqrt{2}\), \(\sec\left(\frac{7\pi}{4}\right)=\sqrt{2}\), \(\cot\left(\frac{7\pi}{4}\right)=-1\)
    16. \(\csc\left(\frac{11\pi}{6}\right)=-2\), \(\sec\left(\frac{11\pi}{6}\right)=\frac{2}{\sqrt{3}}\), \(\cot\left(\frac{11\pi}{6}\right)=-\sqrt{3}\)
    17. \(\sec(2\pi)=1\)
    1. \(\sec(0^{\circ})=1\)
    2. \(\csc\left(30^{\circ}\right)=2\), \(\sec\left(30^{\circ}\right)=\frac{2}{\sqrt{3}}\), \(\cot\left(30^{\circ}\right)=\sqrt{3}\)
    3. \(\csc\left(45^{\circ}\right)=\sqrt{2}\), \(\sec\left(45^{\circ}\right)=\sqrt{2}\), \(\cot\left(45^{\circ}\right)=1\)
    4. \(\csc\left(60^{\circ}\right)=\frac{2}{\sqrt{3}}\), \(\sec\left(60^{\circ}\right)=2\), \(\cot\left(60^{\circ}\right)=\frac{1}{\sqrt{3}}\)
    5. \(\csc\left(90^{\circ}\right)=1\), \(\cot\left(90^{\circ}\right)=0\)
    6. \(\csc\left(120^{\circ}\right)=\frac{2}{\sqrt{3}}\), \(\sec\left(120^{\circ}\right)=2\), \(\cot\left(120^{\circ}\right)=-\frac{1}{\sqrt{3}}\)
    7. \(\csc\left(135^{\circ}\right)=\sqrt{2}\), \(\sec\left(135^{\circ}\right)=-\sqrt{2}\), \(\cot\left(135^{\circ}\right)=-1\)
    8. \(\csc\left(150^{\circ}\right)=2\), \(\sec\left(150^{\circ}\right)=-\frac{2}{\sqrt{3}}\), \(\cot\left(150^{\circ}\right)=-\sqrt{3}\)
    9. \(\sec(180^{\circ})=-1\)
    10. \(\csc\left(210^{\circ}\right)=-2\), \(\sec\left(210^{\circ}\right)=-\frac{2}{\sqrt{3}}\), \(\cot\left(210^{\circ}\right)=\sqrt{3}\)
    11. \(\csc\left(225^{\circ}\right)=-\sqrt{2}\), \(\sec\left(225^{\circ}\right)=-\sqrt{2}\), \(\cot\left(225^{\circ}\right)=1\)
    12. \(\csc\left(240^{\circ}\right)=-\frac{2}{\sqrt{3}}\), \(\sec\left(240^{\circ}\right)=-2\), \(\cot\left(240^{\circ}\right)=\frac{1}{\sqrt{3}}\)
    13. \(\csc\left(270^{\circ}\right)=-1\), \(\cot\left(270^{\circ}\right)=0\)
    14. \(\csc\left(300^{\circ}\right)=-\frac{2}{\sqrt{3}}\), \(\sec\left(300^{\circ}\right)=2\), \(\cot\left(300^{\circ}\right)=-\frac{1}{\sqrt{3}}\)
    15. \(\csc\left(315^{\circ}\right)=-\sqrt{2}\), \(\sec\left(315^{\circ}\right)=\sqrt{2}\), \(\cot\left(315^{\circ}\right)=-1\)
    16. \(\csc\left(330^{\circ}\right)=-2\), \(\sec\left(330^{\circ}\right)=\frac{2}{\sqrt{3}}\), \(\cot\left(330^{\circ}\right)=-\sqrt{3}\)
    17. \(\sec(360^{\circ})=1\)
    1. \(\arcsin(-1)=-\frac{\pi}{2}\), \(\arccos(-1)=\pi\)
    2. \(\arcsin\left(-\frac{\sqrt{3}}{2}\right)=-\frac{\pi}{3}\), \(\arccos\left(-\frac{\sqrt{3}}{2}\right)=\frac{5\pi}{6}\)
    3. \(\arcsin\left(-\frac{\sqrt{2}}{2}\right)=-\frac{\pi}{4}\), \(\arccos\left(-\frac{\sqrt{2}}{2}\right)=\frac{3\pi}{4}\)
    4. \(\arcsin\left(-\frac{1}{2}\right)=-\frac{\pi}{6}\), \(\arccos\left(-\frac{1}{2}\right)=\frac{2\pi}{3}\)
    5. \(\arcsin(0)=0\), \(\arccos(0)=\frac{\pi}{2}\)
    6. \(\arcsin\left(\frac{1}{2}\right)=\frac{\pi}{6}\), \(\arccos\left(\frac{1}{2}\right)=\frac{\pi}{3}\)
    7. \(\arcsin\left(\frac{\sqrt{2}}{2}\right)=\frac{\pi}{4}\), \(\arccos\left(\frac{\sqrt{2}}{2}\right)=\frac{\pi}{4}\)
    8. \(\arcsin\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}\), \(\arccos\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6}\)
    9. \(\arcsin(1)=\frac{\pi}{2}\), \(\arccos(1)=0\)
    1. \(-\frac{\pi}{3}\)
    2. \(-\frac{\pi}{4}\)
    3. \(-\frac{\pi}{6}\)
    4. \(0\)
    5. \(\frac{\pi}{6}\)
    6. \(\frac{\pi}{4}\)
    7. \(\frac{\pi}{3}\)
  3. Calculate the following.
    1. \(-\frac{\pi}{3}\)
    2. \(\frac{\pi}{5}\)
    3. \(\frac{\pi}{15}\)
    4. \(\frac{1}{2}\)
    5. \(-\frac{1}{3}\)
    6. \(\sqrt{3}\)
    7. \(\frac{3\pi}{5}\)
    8. \(\frac{2\pi}{7}\)
    9. \(-\frac{\pi}{5}\)
    1. \(\frac{7}{\sqrt{53}}\)
    2. \(\frac{\sqrt{56}}{9}\)
    3. \(\frac{\sqrt{30}}{60}\)
    1. \(\frac{\pi}{3},\frac{5\pi}{3}\)
    2. \(\frac{\pi}{3}+2\pi k,\frac{2\pi}{3}+2\pi k,\frac{4\pi}{3}+2\pi k, \frac{5\pi}{3}+2\pi k\) where \(k\) is an integer
    3. \(\frac{\pi}{2}\)
    4. \(2\pi k\) where \(k\) is an integer
    5. \(\frac{\pi}{6},\frac{11\pi}{6}\)
    6. \(\frac{2\pi}{3}+\pi k\), \(\frac{5\pi}{3}+\pi k\) or just \(\frac{2\pi}{3}+\pi k\) where \(k\) is an integer
    7. \(\frac{\pi}{3}+2\pi k, \frac{5\pi}{3}+2\pi k\) where \(k\) is an integer
    8. \(\arccos\left(\frac{1}{3}\right)+2\pi k\), \(2\pi-\arccos\left(\frac{1}{3}\right)+2\pi k\) where \(k\) is an integer
    9. \(\arcsin(0.45)+2\pi k\), \(\pi-\arcsin(0.45)+2\pi k\) where \(k\) is an integer
    10. no solution
    11. \(\frac{\pi}{15}+\frac{2\pi}{5}k\), \(\frac{1\pi}{3}+\frac{2\pi}{5}k\) where \(k\) is an integer
  4. \(\sin(\theta)=-\frac{6}{11}\), \(\cos(\theta)=-\frac{\sqrt{85}}{11}\), \(\tan(\theta)=\frac{6}{\sqrt{85}}\), \(\csc(\theta)=-\frac{11}{6}\), \(\cot(\theta)=\frac{\sqrt{85}}{6}\), \(\sec(\theta)=-\frac{11}{\sqrt{85}}.\)

Return

  • Return

© Copyright 2025 by the POC Writing Team: Bryan Carrillo, Yat Sun Poon, and David Weisbart. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the POC Writing Team.