Chapter 1 Section 1
Notes
Linguistic Mapping Exercises
Knowledge Checks
Explicitly write down all the elements of the set \(S\) given by \[S=\{n\in\mathbb{N}\colon 2n\leq 8\}.\]
Take \(A\) and \(B\) to be the sets given by \[A=\{-1,1\}\quad\text{and}\quad B=\{-1,0,1\}.\] Determine whether the following statements are true or false.
- \(A\subseteq B\)
- \(B\subseteq A\)
Take \(A\), \(B\) and \(C\) to be the sets given by \[A=\{-1,1\},\quad B=\{-1,0,1\}\quad\text{and}\quad C=\{0,1,5,6\}.\] Determine whether the following statements are true or false.
- \(A\subseteq B\)
- \(B\subseteq A\)
- \(C\subseteq A\)
- \(B\subseteq C\)
- \(C\subseteq B\)
Take \(A\) and \(B\) to be the sets given by \[A=\{-2,-1,0,1,4\}\quad\text{and}\quad B=\{-1,0,1,3\}.\] Write out explicitly all elements.
- \(A\cup B\)
- \(A\cap B\)
Determine the following intersection: \[\{1\}\cap\{-1,0\}.\]
Take \(X\), \(Y\) and \(Z\) to be the sets given by \[X=\{x\in\mathbb{N}\colon x\text{ is even}\},\quad Y=\{y\in\mathbb{N}\colon y<21\}\quad\text{and}\quad Z=\{z\in\mathbb{N}\colon z\text{ is a multiple of }3\}.\] Determine \[Z\cap(X\cap Y).\]
Take \(A\) and \(B\) to be the sets given by \[A=\{-2,-1,0,1,2\}\quad\text{and}\quad B=\{-3,-1,0,3\}.\] Determine the following.
- \(A\smallsetminus B\)
- \(B\smallsetminus A\)
Remember, do the knowledge checks before checking the solutions.