Chapter 1.1 Practice
\[ \definecolor{ucrblue}{rgb}{0.0627,0.3843,0.6039} \definecolor{ucrgold}{rgb}{0.9686,0.6941,0.2824} \definecolor{ucrred}{rgb}{0.8941,0,0.1686} \definecolor{ucrgreen}{rgb}{0.4706,0.7451,0.1255} \definecolor{ucraccent}{rgb}{1.0000,0.9569,0.8392} \DeclareMathOperator*{\LO}{O} \DeclareMathOperator*{\Lo}{o} \DeclareMathOperator*{\Recip}{Recip} \DeclareMathOperator*{\abs}{abs} \DeclareMathOperator{\pow}{pow} \]
Questions
Question 1
- Write out explicitly every element of the following sets
- \(\{n\in\mathbb{N}\colon 2n\leq 17\}\)
- \(\{n\in\mathbb{N}\colon 3n< 21\}\)
- \(\{n\in\mathbb{N}\colon n^2-9< 16\}\)
Question 2
- Take \(A=\{2,3,5\}\), \(B=\{1,3,11\}\), \(C=\{1,2,3,11,5\}\), and \(D=\{1,2\}.\) Determine whether or not the following statements are true or false.
- \(A\subseteq B\)
- \(B\subset A\)
- \(A\subseteq C\)
- \(A\subset C\)
- \(B\subseteq C\)
- \(B\subset C\)
- \(D\subseteq C\)
- \(C\subset D\)
- \(D\subset C\)
Question 3
- Take \(A=\{1,2,3,4\}\), \(B=\{2,3,4,5\}\), and \(C=\{0,1,5,6\}.\) Write out explicitly the elements of the following sets.
- \(A\cup B\)
- \(A\cap B\)
- \(C\cup B\)
- \(C\cap B\)
- \(A\cup C\)
- \(A\cap C\)
- \((A\cap C)\cup B\)
- \((B\cap C)\cap A\)
Answers
Question 1
- \(\{1,2,3,4,5,6,7,8\}\)
- \(\{1,2,3,4,5,6\}\)
- \(\{1,2,3,4\}\)
Question 2
- false
- false
- true
- true
- true
- true
- true
- false
- true
Question 3
- \(\{1,2,3,4,5\}\)
- \(\{2,3,4\}\)
- \(\{0,1,2,3,4,5,6\}\)
- \(\{5\}\)
- \(\{0,1,2,3,4,5,6\}\)
- \(\{1\}\)
- \(\{1,2,3,4,5\}\)
- \(\{\}\)