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Exercise 1

It is helpful to begin the study of the local linear approximation of functions in a
“laboratory” of polynomial functions. The reason for this is that the order of inter-
section classifies the intersections of lines with polynomial functions. Classifying
intersections is more complicated for more general functions.
With this in mind, take a to be in R and P to be the polynomial function given by

P (x) = x3 + x2 − 20x+ 24.

(a) Expand the polynomial P (x) as a polynomial in the variable (x− a) by writing

P (x) = P (a+ (x− a)).
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(b) Use the expansion in (a) to write P (x) as the sum

P (x) = La(x) + Ea(x),

where La(x) is a line and the error Ea is O((x− a)2). Be sure to explicitly write
out an equation for Ea.
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(c) Use the decomposition of P in (b) to facilitate the calculation of the derivative of
P at a as the limit of a difference quotient.
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(d) Explain in plain English why La is known as the local linear approximation of P
at a.
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Exercise 2

Extending the idea of the local linear approximation of a function to functions that
are not polynomials requires only one new idea:

A linear function La is a local linear approximation of f at (a, f(a)) if there
is a function Ea so that

f(x) = La(x) + Ea(x),

where Ea is o(x− a).

(a) Justify that this definition for f is equivalent to there being a function η that is
defined on the domain of f , continuous at a,

η(a) = 0, and f(x) = La(x) + η(x)(x− a).
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(b) Suppose that f has a local linear approximation at a that is given by

L(x) = m(x− a) + f(a).

Use the limit definition of the derivative to compute f ′(a).
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(c) Show that if f is defined on an interval I and differentiable at a point a in I, then
f has a local linear approximation La at a that is given by

La(x) = f ′(a)(x− a) + f(a).
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(d) Show that if f is differentiable at a, then f is continuous at a. Is the converse
true?
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Exercise 3

Take f and g to be the functions given by

f(x) = |x|(x− 1) and g(x) = x
2
3 .

(a) Determine whether f and g are continuous at 0.
(b) Determine whether f and g are differentiable at 0.
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Take f and g to be the functions given by

f(x) = |x|(x− 1) and g(x) = x
1
3 .

(c) Determine whether f and g have local linear approximations at 0.
(d) Determine whether f and g have lines that are tangent at (0, f(0)) and (0, g(0)),

respectively.
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Take f and g to be the functions given by

f(x) = |x|(x− 1) and g(x) = x
1
3 .

(e) Sketch f and g. Identify any physical features involved in the answers in parts
(a) - (d).
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Exercise 4

Use the difference quotient definition of the derivative to establish at x0 these local
linear approximations:

• For any real numbers x and x0, and any natural number n that is greater
than 1,

xn = + o(x− x0);
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Use the difference quotient definition of the derivative to establish at x0 these local
linear approximations:

• For any positive real numbers x and x0,
√
x = + o(x− x0);
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Use the difference quotient definition of the derivative to establish at x0 these local
linear approximations:

• For any non-zero real numbers x and x0,
1

x
= + o(x− x0);
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Use the difference quotient definition of the derivative to establish at x0 these local
linear approximations:

• For any a in (0, 1) ∪ (1,∞) and any real numbers x and x0,

ax = + o(x− x0);
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Use the difference quotient definition of the derivative to establish at x0 these local
linear approximations:

• For any real numbers x and x0,

sin(x) = + o(x− x0);

cos(x) = + o(x− x0).
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Exercise 5

For each of these choices of function f , decompose f into simpler functions whose lo-
cal linear approximations you have already determined to determine the local linear
approximation of f at x0:
(a) f(x) = 3

√
x+ 7x2, x0 > 0;
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For each of these choices of function f , decompose f into simpler functions whose lo-
cal linear approximations you have already determined to determine the local linear
approximation of f at x0:
(b) f(x) = (x3 + 4) cos(x), any x0 in R;
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For each of these choices of function f , decompose f into simpler functions whose lo-
cal linear approximations you have already determined to determine the local linear
approximation of f at x0:
(c) f(x) = x

5
2 , x0 > 0. Hint: Use the equality x

5
2 = x2

√
x.

(d) In each of the above cases, identify a connection between the derivative of f and
the derivatives of its factors and summands.
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Exercise 6

Follow these steps to show that for any functions f and g that are defined on the
same interval I with a in I and f and g differentiable at a, and for any real numbers
A and B,

(Af +Bg)′(a) = Af ′(a) +Bg′(a).

(a) Write down the local linear approximations for f and g.
(b) Use (a) to rewrite Af(x) +Bg(x).
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Follow these steps to show that for any functions f and g that are defined on the
same interval I with a in I and f and g differentiable at a,

(fg)′(a) = f ′(a)g(a) + f(a)g′(a).

(c) Use (a) to rewrite f(x)g(x).
(d) Show that the resulting error terms have the correct local property.
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Exercise 7

For each of these choices of function f , to determine the local linear linear approxima-
tion of f at x0, decompose f into simpler functions whose local linear approximations
you have already determined:
(a) f(x) = cos(x2 + 3x+ 1), for any x0 in R;
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For each of these choices of function f , to determine the local linear linear approxima-
tion of f at x0, decompose f into simpler functions whose local linear approximations
you have already determined:
(b) f(x) = 1

sin(x), for any x0 with sin(x0) ̸= 0;
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For each of these choices of function f , to determine the local linear linear approxima-
tion of f at x0, decompose f into simpler functions whose local linear approximations
you have already determined:
(c) f(x) =

√
x2 + cos(x) + 1, for any x0 in R.

(d) In each of the above cases, identify a connection between the derivative of f and
the derivative of its constituent parts.
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Exercise 8

Follow these steps to show that for any functions f and g, if f is defined on an interval
J , g is defined on an interval I, a is in I, g(a) is in J , g is differentiable at a, and f is
differentiable at g(a), then

(f ◦ g)′(a) = f ′(g(a))g′(a).

(a) Write down the local linear approximations for f and g. It will help to explicitly
write down the error terms as products.
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(b) Use (a) to rewrite (f ◦ g)(x).
(c) Show that the resulting error term has the correct local property.
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Exercise 9

For each of these choices of function f , decompose f to determine a formula for f ′(x):
(a) f(x) = sin(x)

√
x2 + cos2(x);

(b) f(x) = x tan(x2 + 1).
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Exercise 10

For any function f that is differentiable at a point x0 in its domain, the local linear
approximation of f gives an important way of approximating f , namely, if h is a real
number so that x0 + h is in D(f), then

f(x0 + h) = f(x0) + f ′(x0)h+ ηf(x0 + h)h, where lim
h→0

ηf(x0 + h) = 0.

Approximations are only valuable if the error may be estimated, but for now we will
ignore this fact and simply indicate that

f(x0 + h) ≈ f(x0) + f ′(x0)h.

(a) Write down the local linear approximation for pow 1
3

at (8, 2).
(b) Use a suitable local linear approximation to approximate (8.25)

1
3 .

(c) Determine the error of your approximation by using a calculator with a cube root
function.
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Exercise 11

A function is continuously differentiable on an interval [a, b] if f is differentiable at
every point in [a, b] and the function f ′ is continuous on [a, b].

Take f to be the function that is given by

f(x) =

{
x2 sin(1x) if x ̸= 0
0 if x = 0.

(a) For any nonzero x, use the rules for differentiation to calculate f ′(x).
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A function is continuously differentiable on an interval [a, b] if f is differentiable at
every point in [a, b] and the function f ′ is continuous on [a, b].

Take f to be the function that is given by

f(x) =

{
x2 sin(1x) if x ̸= 0
0 if x = 0.

(b) Directly use the difference quotient definition of the derivative to determine f ′(0).
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A function is continuously differentiable on an interval [a, b] if f is differentiable at
every point in [a, b] and the function f ′ is continuous on [a, b].

Take f to be the function that is given by

f(x) =

{
x2 sin(1x) if x ̸= 0
0 if x = 0.

(c) Show that f is differentiable at 0, but f ′ is not continuous at 0.
The function f is, therefore, a function that is differentiable on R, but not continu-
ously differentiable on R.
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