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Exercise 1

x
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(a, f(a)) (b, f(b))

One way of motivating the Riemann integral of a bounded function f over a closed
and bounded interval [a, b] involves the finite approximation of motion. View f as the
velocity of a particle that moves along the real number line. The goal is to reconstruct
the particle’s total displacement over the interval [a, b] knowing only its velocity.

The simplest problem that we already know how to solve: f is constant.
(a) The velocity is non-negative and equal to V , determine the displacement.
(b) Sketch a picture that gives geometric meaning to this quantity.
(c) What is the geometric meaning if V is negative, and what is the physical meaning?
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Exercise 2

One way of motivating the Riemann integral of a bounded function f over a closed
and bounded interval [a, b] involves the finite approximation of motion. View f as the
velocity of a particle that moves along the real number line. The goal is to reconstruct
the particle’s total displacement over the interval [a, b] knowing only its velocity.

A more involved problem that we still know how to solve: f is piecewise constant on
m subintervals of [a, b].
(a) Use a partition for [a, b] to identify the m intervals on which f is constant. Pre-

cisely define the concept of a partition P for [a, b].
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One way of motivating the Riemann integral of a bounded function f over a closed
and bounded interval [a, b] involves the finite approximation of motion. View f as the
velocity of a particle that moves along the real number line. The goal is to reconstruct
the particle’s total displacement over the interval [a, b] knowing only its velocity.

A more involved problem that we still know how to solve: f is piecewise constant on
m subintervals of [a, b].
(b) Determine in terms of P the finite sequence of intervals (IP (n)), the sequence

of intervals that P defines. For each n, determine |IP (n)|, the length of IP (n).
Note that P cannot identify the openness or closedness of the intervals, but this
does not matter for our purpose. At this point, take the intervals to be closed.
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One way of motivating the Riemann integral of a bounded function f over a closed
and bounded interval [a, b] involves the finite approximation of motion. View f as the
velocity of a particle that moves along the real number line. The goal is to reconstruct
the particle’s total displacement over the interval [a, b] knowing only its velocity.

A more involved problem that we still know how to solve: f is piecewise constant on
m subintervals of [a, b].
(c) Use additivity of displacement to reduce to part (a) and determine the total dis-

placement over [a, b].
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Exercise 3

One way of motivating the Riemann integral of a bounded function f over a closed
and bounded interval [a, b] involves the finite approximation of motion. View f as the
velocity of a particle that moves along the real number line. The goal is to reconstruct
the particle’s total displacement over the interval [a, b] knowing only its velocity.

The inexact general problem: Replace f with a piecewise constant approximation
that is constant on finitely many intervals.
(a) Given a partitionP for [a, b], use a tagging τP ofP to sample f in order to determine

the piecewise constant approximation. Precisely define the concept of a tagging
for a partition P .
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(b) Precisely define the concept of a tagged partition (P, τP ) for [a, b].
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(c) Construct the piecewise constant approximation for f with the tagged partition
(P, τP ).
Note: It does not matter how you define this replacement of f at the endpoints of
the intervals, so just make them left continuous when there is any ambiguity.
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(d) Use Exercise 2 to identify a formula for the displacement R(f, P, τP ) associated
to the piecewise constant approximation for f .
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Exercise 4

One way of motivating the Riemann integral of a bounded function f over a closed
and bounded interval [a, b] involves the finite approximation of motion. View f as the
velocity of a particle that moves along the real number line. The goal is to reconstruct
the particle’s total displacement over the interval [a, b] knowing only its velocity.

The general problem: Approximate f by a sequence of piecewise constant approxi-
mations.
(a) Take (Pn) to be a sequence of partitions for [a, b]. For each n, precisely define what

is meant by ‖Pn‖, the mesh of Pn.
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(b) Use a sequence of tagged partitions ((Pn, τn)) to identify a sequence of functions
that approximates f .
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(c) For the sequence of piecewise constant functions to approximate f , what type of
sequence should (‖Pn‖) be? Explain why.
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(d) Suppose that the limit of the sequence (R(f, Pn, τn)) converges to a limit L. Iden-
tify a condition on f so that this limit L is meaningful without any other
considerations.
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(e) If f satisfies the condition you identified in (d), then f is Riemann integrable on
[a, b] and L is the Riemann integral of f on [a, b]. This quantity is often denoted
by

L =

∫ b

a

f(x) dx.

Note that physicists often write this quantity as

L =

∫ b

a

dx f(x).

Identify a large class of functions that are Riemann integrable.
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Exercise 5
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Sketched below is a graphical representation of a partition P for the interval [−2, 4],
a tagging τP for P , and the finite sequence of intervals (IP (n)) associated with P .
(a) Identify the domain of P and a formula for P .
(b) Identify the domain of τP and a formula for τP .
(c) Explicitly write down the sequence (IP (n)).

Copyright c© 2024 by Bryan Carrillo and David Weisbart.



x

y

1

−2 0 1 3
2

3 4

(d) Take f to be the function sketched below and give a graphical representation for
the quantity R(f, P, τP ). Explain the meaning of this representation in terms of
velocity.

(e) Write down a formula for R(f, P, τP ).
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Exercise 6

1 3 4 7 12

Take P to be the partition for [1, 12] that is given by

P (0) = 1, P (1) = 3, P (2) = 4, P (3) = 7, and P (4) = 12.

(a) Determine ‖P‖, the mesh of P .
(b) Determine the finite sequence of intervals (IP (n)), the sequence of intervals that

P defines. For each n, determine |IP (n)|, the length of IP (n).
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Exercise 7
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(c) Identify a left endpoint τL, a right endpoint, τR, and midpoint tagging τM for the
partition P .
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Exercise 8

For any sequence of tagged partitions (Pn, τn) of [0, 1] so that (‖Pn‖) is a null sequence,

lim
n→∞
R(pow2, Pn, τn) =

∫ 1

0

x2 dx.

Since pow2 is continuous, this limit exists and is independent of choice of sequence
of tagged partitions.
(a) For each n, take Pn to be an even partition of [0, 1] with n intervals, τn to be a left

endpoint tagging for Pn, and τ ∗n to be a right endpoint tagging for Pn. Write down
for each n a formula for R(pow2, Pn, τn) and R(pow2, Pn, τ

∗
n).
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For any sequence of tagged partitions (Pn, τn) of [0, 1] so that (‖Pn‖) is a null sequence,

lim
n→∞
R(pow2, Pn, τn) =

∫ 1

0

x2 dx.

Since pow2 is continuous, this limit exists and is independent of choice of sequence
of tagged partitions.
(b) Compute the quantity limn→∞R(pow2, Pn, τn) and limn→∞R(pow2, Pn, τ

∗
n).

(c) Simulate the above sequences of sums and their differences. Link

Copyright c© 2024 by Bryan Carrillo and David Weisbart.

https://www.desmos.com/calculator/gvb2lwhwrb


Copyright c© 2024 by Bryan Carrillo and David Weisbart.



Exercise 9

Take f to be Riemann integrable on [−1, 4]. Use the equalities∫ 1

−1
f(x) dx = 3 and

∫ 4

1

f(x) dx = 7

to evaluate ∫ 4

−1
f(x) dx.
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Exercise 10

Take f and g to be Riemann integrable on [3, 5]. Use the equalities∫ 5

3

f(x) dx = 2 and
∫ 5

3

g(x) dx = −1

to evaluate ∫ 5

3

(7f(x) + 2g(x)) dx.
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Exercise 11

x

y

1

1

Use symmetry, antisymmetry, or basic geometry to evaluate these integrals:

(a)
∫ 3

−2
x dx;
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Use symmetry, antisymmetry, or basic geometry to evaluate these integrals:

(b)
∫ 1

−1
x

5
3 dx;
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1

Use symmetry, antisymmetry, or basic geometry to evaluate these integrals:

(c)
∫ 1

2

−
√
3
2

√
1− x2 dx.
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Exercise 12

For any function f , if f is continuous on [a, b], then f is Riemann integrable on [a, b].
Take P to be any partition of [a, b].
(a) Explain what it means for τm to be a minimal tagging for [a, b] with respect to f .
(b) Explain what it means for τM to be a maximal tagging for [a, b] with respect to f .
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For any function f , if f is continuous on [a, b], then f is Riemann integrable on [a, b].
Take P to be any partition of [a, b].
(c) Take ωf to be a modulus of continuity for f on [a, b] and use ωf to provide an upper

bound for f(τM(i))− f(τm(i)) for any i in D(P )r {0}.
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For any function f , if f is continuous on [a, b], then f is Riemann integrable on [a, b].
Take P to be any partition of [a, b].
(d) Use the fact that

R(f, P, τm) ≤
∫ b

a

f(x) dx ≤ R(f, P, τM)

to estimate the maximum possible error for a Riemann sum approximation of∫ b

a

f(x) dx

that uses a partition P with mesh ‖P‖.
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Exercise 13

For each of these choices of interval [a, b] and positive real number δ, estimate the
maximum possible error for a Riemann sum approximation of∫ b

a

1

x
dx

that uses a partition P with mesh equal to δ:
(a) [a, b] = [1, 4] and δ = 1

4;
(b) [a, b] = [4, 8] and δ = 1

4;
(c) [a, b] = [ 1

100, 1] and δ = 1
10.
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