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Exercise 1

Take (¢, *) to be the unit circle paired with the binary operation given by
(a,b) % (¢,d) = (ac — bd, ad + bc).

(a) Explain in plain English what “binary operation” means and show that x is a
binary operation on %.
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Take (¢, *) to be the unit circle paired with the binary operation given by
(a,b) % (¢,d) = (ac — bd, ad + bc).

(b) Explain in plain English what it means for a binary operation to be associative
and show that x is an associative binary operation on %
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Take (¢, *) to be the unit circle paired with the binary operation given by
(a,b) % (¢,d) = (ac — bd, ad + bc).

(c) Explain in plain English what an identity element is and identify the identity
element in (%, x).
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Take (¢, *) to be the unit circle paired with the binary operation given by
(a,b) % (¢,d) = (ac — bd, ad + bc).

(d) Explain in plain English what it means for an element to be the inverse of another
element.

(e) Given an element p in (¢, ), identify its inverse p—..
(H) Explain why (%, x) is a group.
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Exercise 2

Identifying the symmetry group of a set with a certain structure can help us to better
understand and determine the properties of the set and the structure. For example,
the group (H, ¢) formed by the translations of the plane together with the non-zero
scalings of the y-axis is a group that preserves the set of quadratic polynomials.

(a) Explain what this statement means.

(b) For any two elements ¢; and ¢, of H, define the element g; e g by the equality

(910 92)f = g1(g2f)

for any quadratic polynomials f. Explicitly write Y.,e(as, b2) in terms of (a1, b;)eY,.
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For example, the group (H, e) formed by the translations of the plane together with
the non-zero scalings of the y-axis is a group that preserves the set of quadratic
polynomials.

(c) Can any element of H be written as (a, b) e Y. for suitable choices of a, b, and ¢?
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For example, the group H formed by the translations of the plane together with
the non-zero scalings of the y-axis is a group that preserves the set of quadratic
polynomials. For any real number a and any nonzero real number b, denote

To(x)=x+4+a and Sy(x) = bz.

(d) Show that for any element h in H there are real numbers A, B, and C so that for
any quadratic polynomial f,

hf =Tso0Spo folg.
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Exercise 3

Take (H, o) to be the group formed by the translations of the plane together with the
non-zero scalings of the y-axis. Take f and ¢ to be the quadratic polynomials given

by

f(z)=42* +52+1 and g(x) = 52>+ 3z + 2.
(a) Identify the vertex of f, the vertex of Y% f, and the vertex of g.
(b) Determine an element of H that takes f to g.

(c) Use the rigidity of quadratic polynomials to determine the symmetry that takes
f to g, and carefully explain how use of this rigidity simplified the problem.
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Exercise 4

Take S to be the group that consists of the identity, and is generated by reflection
across the y-axis, and rotation by half a circle.

(a) Explain why S is a group and identify all elements of S.

(b) Describe in plain English the symmetries of an even function and the symmetries
of an odd function.
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Exercise 5

Take S to be the group that consists of the identity, and is generated by reflection
across the y-axis, and rotation by half a circle.

(c) Sketch an example of an even function and an odd function.
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Exercise 6

Explain how to determine if a function is even or odd.

(a) Determine whether the function f is an even or odd function, where
f(x) = 2%+ z*.
(b) Determine whether the function ¢ is an even or odd function, where

g(x) = |z|2”.
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Exercise 7

Explain how to determine if a function is neither even nor odd.

(a) Sketch an example of a function that is neither even nor odd.
(b) Explain why the following function is neither even nor odd:

h(z) = 2°|z| + 2.
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Exercise 8

For each choice of function f, explain why it is even, odd or neither:

(a) f = E + x;
ifz <0
() f(x {a: if v > 0;
(C) f m2—|—1’
if x <0
241 1 —
@i {M
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Exercise 9

For each choice of function f, explain why it is even, odd or neither:
(a) f(z) = sin(x);
(b) f(x) = cos(x);
(c) f(z) = tan(x).
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Functions with other symmetries are also possible. For example, a function may be
symmetric under reflection across a vertical line that passes through (a,0) or under
rotation by half a circle around (a,0). For each choice of function f, identify the

symmetries of f:
(@) f(z) = (z+2)* + |z + 2|;
b) f(z) = (z +2)* + =35

(© f(z) = (z — 1)* —z +3.
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