

Copyright © 2024 by Bryan Carrillo and David Weisbart.

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from Bryan Carrillo and David Weisbart.

The idea of a line being tangent at a point p to a special subset of \mathbb{R}^2 took a long time to precisely develop. Our presentation unfolds iteratively, with each step more nuanced that the previous. It is helpful to analyze the conceptual progression.

- (1) For any quadratic polynomial f and any circle C, a line L_p is tangent to f or C at p if a certain condition holds on the number of intersections of L_p with f or C. Identify this condition.
- (2) Does this condition make sense for any polynomial f?

$Exercise \ 2$

Take C to be the circle of radius r centered at (a, b).

(a) Determine an equation for the line L_{θ} that is tangent to C at the point $r\langle \cos(\theta), \sin(\theta) \rangle + (a, b)$.

(b) Sketch *C* and L_{θ} using a computer and observe what happens as you change *r*, *a*, *b*, and θ .

Take f to be the function given by

$$f(x) = x^2 - 2x - 5.$$

(a) Identify all lines ℓ_m that intersect f at (2, -5), where m is the slope of ℓ_m .

(b) Identify the discriminant D(m) of $f - \ell_m$.

Take f to be the function given by

$$f(x) = x^2 - 2x - 5.$$

(c) For what values of D(m) will f and ℓ_m intersect at exactly one point?

(d) Determine an equation of the line L_2 that is tangent to f at (2, -5). Is this line unique?

Take f to be the polynomial function that is given by

$$f(x) = (x+4)^2(x-1)(x-5)^3.$$

Sketch f and use the sketch to identify all points where the *x*-axis *should* be tangent to f.

For any polynomial function f of degree 2 or greater, describe the following:

(a) What it means for a line L_a to have an order n intersection with f at (a, f(a));
(b) How rewriting f(x) as f(a+(x-a)) facilitates determining the order of intersection of f with L_a at (a, f(a)).

The idea of a line being tangent at a point p to a special subset of \mathbb{R}^2 took a long time to precisely develop. Our presentation unfolds iteratively, with each step more nuanced that the previous. It is helpful to analyze the conceptual progression.

(3) For any polynomial f, a line L_a is tangent to f at (a, f(a)) if a certain condition holds on the order of intersection of f and L_a at (a, f(a)). Identify this condition.

Take f to be the function given by

$$f(x) = x^2 - 2x - 5.$$

(a) Identify an equation for the line L that has a degree 2 intersection with f at (2, -5).

(b) Determine an equation of the line L_2 that is tangent to f at (2, -5).

Take f to be the function given by

$$f(x) = x^4 + 3x^3 - 10x + 4.$$

(a) Identify an equation for the line L that has a degree 2 (or greater) intersection with f at (1, -2).

(b) Determine an equation of the line L_1 that is tangent to f at (1, -2).

The idea of a line being tangent at a point p to a special subset of \mathbb{R}^2 took a long time to precisely develop. Our presentation unfolds iteratively, with each step more nuanced that the previous. It is helpful to analyze the conceptual progression.

(4) For any rational function f, a line L_a is tangent to f at (a, f(a)) if a certain condition holds on the difference $f - L_a$. Identify this condition.

Take f to be given by $f(x) = \frac{2x+1}{x-1}.$	
Determine an equation for the line tangent to f at $(4, 3)$.	

