1. Take *f* to be the function given by

$$f(x) = \begin{cases} 3 & \text{if } -3 \le x < -1\\ \left(\frac{1}{2}\right)^{x+1} + 1 & \text{if } -1 \le x < 1\\ -2x + 3 & \text{if } 1 \le x < 3. \end{cases}$$

Identify its domain.

2. Take f to be the function given by

$$f(x) = \begin{cases} 3 & \text{if } -3 \le x < -1\\ \left(\frac{1}{2}\right)^{x+1} + 1 & \text{if } -1 \le x < 1\\ -2x + 3 & \text{if } 1 \le x < 3. \end{cases}$$

Identify its domain. Sketch f.

3. Take *f* to be the piecewise function whose graph is given below.

It is a piecewise function made up of linear and quadratic functions. Determine a formula for f.

$$f(x) = \begin{cases} -\frac{5}{3}(x+4) + 3 & \text{if } -4 \le x \le -2 \\ -3(x-1)^2 + 2 & \text{if } 0 < x < 2 \\ \frac{11}{6}(x-3) - 2 & \text{if } 3 \le x \le 6 \end{cases}$$

4. Take f and g to be the functions given by

$$f(x) = \begin{cases} x - 3 & \text{if } x \le 4 \\ -x + 9 & \text{if } x > 4 \end{cases} \quad \text{and} \quad g(x) = \begin{cases} 3x - 2 & \text{if } x < 6 \\ 3x - 16 & \text{if } x \ge 6. \end{cases}$$

Solve the inequality f(x) > g(x) without using graphing software. Write your answer as a union of intervals.

5. Take f to be the function given by

$$f(x) = \begin{cases} 3x & \text{if } x \le 2\\ -x^2 & \text{if } 4 < x \le 5 \end{cases}$$

and g to be the piecewise linear function whose graph is given below.

Write $f \circ g$ as a piecewise function and state its domain.

$$g(x) = \begin{cases} -\frac{1}{2}(x+4)+b & \text{if } -4 \le x \le 6 \\ x-1 & \text{if } 1 < x \le 6 \end{cases}$$

$$f(g(x)) = \begin{cases} 3g(x) & \text{if } g(x) \le 2 \\ -(g(x))^2 & \text{if } 4 < g(x) \le 5 \end{cases}$$

$$= \begin{cases} -(-\frac{1}{2}(x+4)+6)^2 & \text{if } -2 \le x < 0 \\ 3(x-1) & \text{if } 1 < x \le 3 \\ -(x-1)^2 & \text{if } 4 < x \le 5 \end{cases}$$

6. Take f and g to be functions whose graphs are given below.

Solve the inequality $f(x)g(x) \ge 0$.

final answer
[-1.5,-0.5]U[1.5,2.5]

7. Take f and g to be functions whose graphs are given below.

Solve the inequality $f(x)g(x) \leq 0$.

final Answer (-4,-1.5]U[-0.5,1.5]U[^{2.5,4}]