1. Take $f(x) = x^3$. Draw the function on the restriction $(-3, -1] \cup [1, \infty)$.

2. Take f and g to be functions with $\mathcal{D}(f)=(-\infty,10]$, $\mathcal{D}(g)=(-5,3]\cup(9,\infty)$, and the zero set of g is $\{3,11\}$. Determine the domain of f+g, fg, and $\frac{f}{g}$.

3. Determine how f - g is defined and the domain of f - g.

$$(f-g)(x)=f(x)-g(x)$$
, domain of $f-g$ is definition of $f-g$

4. Take f and g to be given by

$$f(x) = 2x$$
 and $g(x) = \sqrt{x-4}$.

Determine a formula for $f \circ g$ and $g \circ f$. Also determine the domain of both functions.

•
$$(f \circ g)(x) = f(g(x))$$

$$= 2(g(x)) \Rightarrow (f \circ g)(x) = 21x - 4$$

$$= 21x - 4$$
• $(g \circ f)(x) = g(f(x))$

$$= \sqrt{f(x)} \Rightarrow (g \circ f)(x) = \sqrt{2x - 4}$$

$$= \sqrt{g \circ f}(x) \Rightarrow (g \circ f)(x) = \sqrt{2x - 4}$$

$$= \sqrt{g \circ f}(x) \Rightarrow (g \circ f)(x) = \sqrt{2x - 4}$$

$$= \sqrt{g \circ f}(x) \Rightarrow (g \circ f)(x) = \sqrt{g \circ f}(x) \Rightarrow (g \circ f)(x) = \sqrt{g \circ f}(x) \Rightarrow (g \circ f)(x) \Rightarrow (g$$

5. Take

$$a(x) = x$$
, $b(x) = x^2$, $c(x) = x + 3$, $d(x) = 5x$, and $e(x) = \sqrt{x}$.

Decompose f into sums, products, quotients and or composites of more elementary functions, where

$$f(x) = x^2 \sqrt{x + 5x^2} + \frac{x+3}{x}.$$

①
$$x^{2} = b$$
 $\Rightarrow 5x^{2} = (d \circ b)(x)$

5x = d

② $x = a$

5x² = dob $\Rightarrow x + 5x^{2} = a + dob$
 $5x^{2} = dob$
 $\sqrt{x} = e$
 $\sqrt{x} + 5x^{2} = e \circ (a + d \circ b)$
 $\sqrt{x} = e$
 $\sqrt{x} + 5x^{2} = a + dob$