- 1. For each function f and each x_0 that is given below, determine the difference quotient $\frac{1}{h}\Delta_{x_0}f(h)$ for each real number h.
 - a) $f(x) = -2x^2 + x + 3$, $x_0 = 2$
- $f(x) = -2x^2 + x + 3, x_0 = 2$ b) $f(x) = \frac{x^2 3}{x}, x_0 = 5$

c) $f(x) = 3\cos(x), x_0 = \frac{\pi}{4}$

d) $f(x) = \sqrt{x}, x_0 = 9$

e)
$$f(x) = \exp(x), x_0 = 1$$

f)
$$f(x) = 4$$
, $x_0 = 1$

2. For each function f and x_0 given below, set up a limit to determine $f'(x_0)$.

a)
$$f(x) = -2x^2 + x + 3$$
, $x_0 = 2$

b)
$$f(x) = \frac{x^2 - 3}{x}$$
, $x_0 = 5$

c)
$$f(x) = 3\cos(x), x_0 = \frac{\pi}{4}$$

d)
$$f(x) = \sqrt{x}, x_0 = 9$$

e)
$$f(x) = \exp(x), x_0 = 1$$

f)
$$f(x) = 4$$
, $x_0 = 1$

- 3. For each function f that is given below, use limits to calculate f'(x) for every x where this limit exists.
 - a) f(x) = 4

b) f(x) = 5x

c) $f(x) = -2x^2 + x + 3$

d) $f(x) = \frac{x^2 - 3}{x}$

e) $f(x) = \sqrt{x}$

4. Take f to be the function that is given by

$$f(x) = \cos(5x^2 + 1).$$

Show that f is differentiable for each x in \mathbb{R} and determine f'(x).

5. Take f to be the function that is given by

$$f(x) = e^{x^2 + 4x}.$$

Show that f is differentiable for each x in $\mathbb R$ and determine f'(x).

6. Take c to be the path that is given for each t by

$$c(t) = (t^3 - 5t, 6\sin(5t)).$$

Use limits to directly calculate $c^{\prime}(t)$.