1. Take f to be the function given by

$$f(x) = \begin{cases} \frac{x^2 - 3x - 10}{x - 5} & \text{if } x \neq 5\\ 12 & \text{if } x = 5. \end{cases}$$

Determine $\lim_{x \to 5} f(x)$ and whether the limit depends on f(5).

6. Take *a*, *b*, *c*, and *d* to be functions that are defined in an open interval that contains 2 and

 $\lim_{x \to 2} a(x) = 6, \quad \lim_{x \to 2} b(x) = -1, \quad \lim_{x \to 2} c(x) = 4, \text{and} \quad \lim_{x \to 2} d(x) = 2.$

Use the limit laws to determine the following limits:

$$\lim_{x \to 2} \left((a(x))^2 b(x) + \frac{(x-3)c(x)}{d(x)+3} \right)$$

2. Determine all horizontal and vertical asymptotes of the function f that is given by
$f(x) = \begin{cases} 5^x + 1 & \text{if } x < -2\\ \frac{5x + 1}{(x + 4)(x - 4)} & \text{if } -2 \le x < 4\\ \arctan(-x) + \frac{5}{x + 2} & \text{if } x \ge 4. \end{cases}$
Horizontal asymptote are determined by taking limit as x > ±00
$\lim_{X \to -\infty} f(x) = \lim_{X \to -\infty} (5^{x} + 1) = 0 + 1 = 1, \lim_{X \to -\infty} 5^{x} = 0 \text{HA of } y = 0.$
$\lim_{X \to \infty} f(x) = \lim_{X \to \infty} (\operatorname{arctan}(-x) + \frac{5}{x+2}) = -\frac{\pi}{2} + 0 = -\frac{\pi}{2}, \lim_{X \to \infty} \operatorname{arctan}(-x) = -\frac{\pi}{2}$
io f has horizontal asymptotes at y=1 and y=-=.
lertical asymptote are determined by identify a real number a where
Function diverges to $\pm \infty$ as $x \Rightarrow a$, $x \Rightarrow a^{+}$ or $x \Rightarrow a^{-}$.
When $-2 \le x \le 4$, $f(x) = \frac{5x+1}{5x+1}$. There is a pole at $x = 4$, so $\lim_{x \to 1} f(x) = -\infty$
(x+4)(x-4) ×→4-
when $x \ge 4$, $f(x) = \operatorname{Orctan}(-x) + 5$ No $x \land in the interval (4, \infty).$
when $x \ge 4$, $f(x) = \arctan(-x) + \frac{5}{x+2}$. No VA in the interval $(4, \infty)$.
when $x \ge 4$, $f(x) = \arctan(-x) + \frac{5}{x+2}$. No VA in the interval $(4, \infty)$. So f has vertical asymptote at $x = 4$.
when $x \ge 4$, $f(x) = \arctan(-x) + 5$. No VA in the interval $(4, \infty)$. So f has vertical asymptote at $x = 4$.
when $x \ge 4$, $f(x) = \arctan(-x) + \frac{5}{x+2}$. No VA in the interval $(4, \infty)$. So f has vertical asymptote at $x = 4$.
when $x \ge 4$, $f(x) = \arctan(-x) + \frac{5}{x+2}$. No vA in the interval $(4, \infty)$. So f has vertical asymptote at $x = 4$.
when $x \ge 4$, $f(x) = \arctan(-x) \pm \frac{5}{x+2}$. No vA in the interval $(4, \infty)$. So f has vertical asymptote at $x = 4$.
when $x \ge 4$, $f(x) = \arctan(-x) + \frac{5}{x+2}$. No VA in the interval $(4, \infty)$. So f has vertical asymptote at $x = 4$.
when $x \ge 4$, $f(x) = \arctan(-x) + 5$. No VA in the interval $(4, \infty)$. So f has vertical asymptote at $x = 4$.
when $x \ge 4$, $f(x) = \arctan(x) + 5$. No VA in the interval $(4, \infty)$. So f has vertical asymptote at $x = 4$.

Knowledge Checks

13. Take f to be the rational function that is given by

$$f(x) = \frac{x^4(x+4)^6(x-1)^2(x-5)^2}{(1-4x)^3(x+3)^8}.$$

Find a monomial *g* so that *f* and *g* have the same asymptotic behavior at both ∞ and $-\infty$.

14. Identify a path that describes the position in time of a particle that moves along the line segment L with endpoints (2, 4) and (5, 1), has domain equal to \mathbb{R} , is at the midpoint of L at time 0, moves only to the left, and reaches all points of L except the endpoints of L.

