1. Determine the equation of the line that is tangent to the ellipse E at the point (8,12), where E is the ellipse that is given by the equation

$$\frac{(x+2)^2}{25} + \frac{(y-4)^2}{16} = 8.$$

(2)
$$Y = (\frac{8}{5}, 3) - (-\frac{2}{5}, 1)$$

$$= (\frac{8}{5} + \frac{2}{5}, 3 - 1)$$

$$= (2, 2),$$

$$50$$

$$V_{\perp} = (-2, 2)$$
Tangent line to C
$$at (\frac{2}{5}, 3) is$$

$$y = -(x - \frac{3}{5}) + 3.$$

$$0r$$

$$L(x) = -(x - \frac{8}{5}) + 3.$$

E and Scale

tangent line to C

to get tangent line

to E.

$$4L(\frac{2}{5})=4(-(\frac{2}{5}-\frac{2}{5})+3)$$
 $=-4(\frac{2}{5}-\frac{2}{5})+12$
 $=-\frac{4}{5}(x-8)+12$

At $(8,12)$ is

 $y=-\frac{11}{5}(x-8)+12$

(3) Scale (to get

2. The line tangent to a quadratic polynomial f at (2,5) is given by

$$L(x) = 7(x - 2) + 5.$$

Determine the line tangent to f^{-1} at (5, 2).

We have
$$L(x) = f'(2)(x-2) + 5,$$
So $f'(2) = 7$
The reflected line will be
$$+ \text{angent to } f^{-1} \text{ and will have}$$

$$(f^{-1})'(5) = f'(2) = \frac{1}{7}$$

Thus, the line tangent to f'is $y = \frac{1}{7}(x-5) + 2$

3. Find the equation of the line *L* tangent to $f(x) = \sqrt{x}$ at (625, 25).

$$f(x) = \sqrt{x} = Pow_{\frac{1}{2}}(x)$$
, so $f'(x) = \frac{1}{2\sqrt{x}}$ and $f'(625) = 2\sqrt{625} = 50$
So the line tangent to f at $(625, 25)$ is
$$L(x) = \frac{1}{50}(x - 625) + 25.$$