1. Take $f(x) = x^3$. Draw the function on the restriction $(-3, -1] \cup [1, \infty)$.

2. Take f and g to be functions with $\mathcal{D}(f)=(-\infty,10]$, $\mathcal{D}(g)=(-5,3]\cup(9,\infty)$, and the zero set of g is $\{3,11\}$. Determine the domain of f+g, fg, and $\frac{f}{g}$.

3. Determine how f - g is defined and the domain of f - g.

4. Take f and g to be given by

$$f(x) = 2x$$
 and $g(x) = \sqrt{x-4}$.

Determine a formula for $f \circ g$ and $g \circ f$. Also determine the domain of both functions.

5. Take

$$a(x) = x$$
, $b(x) = x^2$, $c(x) = x + 3$, $d(x) = 5x$, and $e(x) = \sqrt{x}$.

Decompose f into sums, products, quotients and or composites of more elementary functions, where

$$f(x) = x^2 \sqrt{x + 5x^2} + \frac{x+3}{x}.$$

6. Take $f(x) = \frac{4x+1}{x-3}$. Determine the domain and range of f.