Dr. Bryan Carrillo’s The Principles of Calculus Website
  • Home
  • About
  • Course Schedule
    • Math 2 Spring 2025 In-Person Schedule
    • Math 3A Spring 2025 In-Person Schedule
  • Course Content
  • Demonstration Questions

On this page

  • P-Level
  • C-Level
  • B-Level
  • A-Level

Math 2 Exam II Practice Answers

\[ \definecolor{ucrblue}{rgb}{0.0627,0.3843,0.6039} \definecolor{ucrgold}{rgb}{0.9686,0.6941,0.2824} \definecolor{ucrred}{rgb}{0.8941,0,0.1686} \definecolor{ucrgreen}{rgb}{0.4706,0.7451,0.1255} \definecolor{ucraccent}{rgb}{1.0000,0.9569,0.8392} \DeclareMathOperator*{\LO}{O} \DeclareMathOperator*{\Lo}{o} \DeclareMathOperator*{\abs}{abs} \DeclareMathOperator{\pow}{pow} \]

These are the answers to the Exam II Practice.

P-Level

  1. Domain is \((2,\infty)\) and the range is \((-2,9]\)

  2. \((5,-1)\)

  3. \(\left(\frac{1-3\sqrt{3}}{2},\frac{3+\sqrt{3}}{2} \right)\)

  4. \(p^{-1}=\left(\frac{1}{5},\frac{\sqrt{24}}{5}\right)\)

  5. \(\frac{1}{2}\) of a circle

  6. \(\sin(\theta)=-\frac{\sqrt{24}}{5}\), \(\cos(\theta)=\frac{1}{5}\) and \(\tan(\theta)=-\sqrt{24}\)

  7. Vertex is \((1,4)\), maximum value \(4\) at the vertex, and no minimum value

  8. The zeros are \(-3\), \(3\) and \(-1\) and the respective orders are \(2\), \(5\) and \(8\)

  9. Zeros are \(2\) and \(-5\) with respective orders \(2\) and \(1\); the poles are at \(0\) and \(9\) with respective orders \(1\) and \(3\)

  10. Asymptotic behavior is it behaves like \(\frac{1}{x}\), so it has a horizontal asymptote at \(y=0\)

  11. \(\frac{11}{5}\)

  12. \(f(-2)=-5\) and \(f(1)=-8\)

  13. \(f(-5)=-1\) and \(f(3)=2\)

    1. \(2\pi\)
    2. \(\frac{2\pi}{3}\)
    3. \(\frac{2\pi}{3}\)
    1. horizontal asymptote is \(y=4\); no vertical asymptote
    2. horizontal asymptote is \(y=0\); no vertical asymptote
    3. horizontal asymptote is \(y=-2\); no vertical asymptote
    4. no horizontal asymptote; vertical asymptote is \(x=0\)
    5. no horizontal asymptote; vertical asymptote is \(x=2\)
    6. no horizontal asymptote; vertical asymptote is \(x=5\)
  14. \(x_0=-2\) and \(y_0=5\)

  15. \(\frac{3}{7}\)

  16. \(y=\frac{11}{2}(x-7)+1.\)

  17. \(y=4x+4.\)

C-Level

  1. \(f^{-1}(x)=\sqrt[3]{x-1}-2\), Domain of the inverse and range of the inverse is \((-\infty,\infty)\)

  2. \(\left(\frac{1-\sqrt{72}}{10},\frac{-\sqrt{24}-\sqrt{3}}{10}\right)\)

  3. \(\left(\frac{4+2\sqrt{24}}{5}-3,\frac{2-4\sqrt{24}}{5}+1\right)\)

  4. \(\sin(\theta)=-\frac{\sqrt{24}}{7}\), \(\cos(\theta)=\frac{5}{7}\), \(\tan(\theta)=-\frac{\sqrt{24}}{5}\), \(\csc(\theta)=-\frac{7}{\sqrt{24}}\), \(\sec(\theta)=\frac{7}{5}\) and \(\cot(\theta)=-\frac{5}{\sqrt{24}}\)

    1. \(\sin(A+B)=\frac{3+\sqrt{960}}{35}\)
    2. \(\cos(A-B)=\frac{3\sqrt{24}+\sqrt{40}}{35}\)
    1. Translate \(g\) up by \(4\). Domain is \((-\infty,\infty)\). Range is \((4,\infty)\). Horizontal asymptote at \(y=4\)
    2. Translate \(g\) right by \(2\), reflect over \(x\)-axis. Domain is \((-\infty,\infty)\). Range is \((-\infty,0)\). Horizontal asymptote at \(y=0\)
    3. Reflect \(g\) over \(x\)-axis, translate down by \(2\). Domain is \((-\infty,\infty)\). Range is \((-\infty,-2)\). Horizontal asymptote at \(y=-2\)
    4. Reflect over \(x\)-axis, translate \(g\) up by \(2\). Domain is \((0,\infty)\). Range is \((-\infty,\infty)\). Vertical asymptote at \(x=0\)
    5. Translate \(g\) right by \(2\). Domain is \((2,\infty)\). Range is \((-\infty,\infty)\). Vertical asymptote at \(x=2\)
    6. Translate \(g\) left by \(5\), reflect over \(y\)-axis, scale \(y\) by \(2\). Domain is \((-\infty,5)\). Range is \((-\infty,\infty)\). Vertical asymptote at \(x=5\)
    1. \(6\)
    2. \(-24\)
  1. \(A(t)=4\left(\frac{7}{2}\right)^\frac{t-2}{3}\)

    1. \(m^2-16m+64=0\)
    2. \(y=8(x-2)+13\)
  2. \(y=-\frac{1}{8}(x-2)+5\)

  3. \(y=\frac{4}{3}\left(x-\frac{1}{3}\right)+4.\)

B-Level

    1. the graph is given below
    2. \(\{-4\}\cup[-3,3)\cup(3,4]\cup(5,\infty)\)
    3. \((-3,0)\cup(0,3)\cup(3,4)\cup(5,\infty)\)
    4. \((-\infty,-3]\cup\{0\}\cup[4,5)\)
    5. \((-\infty,-4)\cup(-4,-3)\cup(4,5)\)

    1. \(\frac{8\ln(2)}{\ln\left(\frac{9}{4}\right)}\)
    2. \(\frac{\ln\left(\frac{9}{4}\right)}{8}\)
    1. \(A(t)=t\left\langle \tfrac{4}{\sqrt{65}},\tfrac{7}{\sqrt{65}}\right\rangle+(1,2)\) and \(B(t)=\langle 3\cos\left(2t\right),3\sin\left(2t\right) \rangle+A(t)\)
    2. \(\sqrt{65}\).
    3. \(2\)

A-Level

    1. The sketches \(f\) and \(f^{-1}\) are below
    2. \(f^{-1}(x)=\begin{cases}\sqrt{x}&\text{ if }0\leq x\leq 1\\-\sqrt{x}&\text{ if }1<x<4\\-\sqrt{x}&\text{ if }9\leq x<16\end{cases}\)

  1. \(y=-(x-2)+5\)

  2. Graph of \(g\) is given below.

  1. \(y=-4(x-5)+3\)

© Copyright 2025 by the POC Writing Team: Bryan Carrillo, Yat Sun Poon, and David Weisbart. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the POC Writing Team.