Math 2 Exam II Practice Answers
\[ \definecolor{ucrblue}{rgb}{0.0627,0.3843,0.6039} \definecolor{ucrgold}{rgb}{0.9686,0.6941,0.2824} \definecolor{ucrred}{rgb}{0.8941,0,0.1686} \definecolor{ucrgreen}{rgb}{0.4706,0.7451,0.1255} \definecolor{ucraccent}{rgb}{1.0000,0.9569,0.8392} \DeclareMathOperator*{\LO}{O} \DeclareMathOperator*{\Lo}{o} \DeclareMathOperator*{\abs}{abs} \DeclareMathOperator{\pow}{pow} \]
These are the answers to the Exam II Practice.
P-Level
Domain is \((2,\infty)\) and the range is \((-2,9]\)
\((5,-1)\)
\(\left(\frac{1-3\sqrt{3}}{2},\frac{3+\sqrt{3}}{2} \right)\)
\(p^{-1}=\left(\frac{1}{5},\frac{\sqrt{24}}{5}\right)\)
\(\frac{1}{2}\) of a circle
\(\sin(\theta)=-\frac{\sqrt{24}}{5}\), \(\cos(\theta)=\frac{1}{5}\) and \(\tan(\theta)=-\sqrt{24}\)
Vertex is \((1,4)\), maximum value \(4\) at the vertex, and no minimum value
The zeros are \(-3\), \(3\) and \(-1\) and the respective orders are \(2\), \(5\) and \(8\)
Zeros are \(2\) and \(-5\) with respective orders \(2\) and \(1\); the poles are at \(0\) and \(9\) with respective orders \(1\) and \(3\)
Asymptotic behavior is it behaves like \(\frac{1}{x}\), so it has a horizontal asymptote at \(y=0\)
\(\frac{11}{5}\)
\(f(-2)=-5\) and \(f(1)=-8\)
\(f(-5)=-1\) and \(f(3)=2\)
- \(2\pi\)
- \(\frac{2\pi}{3}\)
- \(\frac{2\pi}{3}\)
- horizontal asymptote is \(y=4\); no vertical asymptote
- horizontal asymptote is \(y=0\); no vertical asymptote
- horizontal asymptote is \(y=-2\); no vertical asymptote
- no horizontal asymptote; vertical asymptote is \(x=0\)
- no horizontal asymptote; vertical asymptote is \(x=2\)
- no horizontal asymptote; vertical asymptote is \(x=5\)
\(x_0=-2\) and \(y_0=5\)
\(\frac{3}{7}\)
\(y=\frac{11}{2}(x-7)+1.\)
\(y=4x+4.\)
C-Level
\(f^{-1}(x)=\sqrt[3]{x-1}-2\), Domain of the inverse and range of the inverse is \((-\infty,\infty)\)
\(\left(\frac{1-\sqrt{72}}{10},\frac{-\sqrt{24}-\sqrt{3}}{10}\right)\)
\(\left(\frac{4+2\sqrt{24}}{5}-3,\frac{2-4\sqrt{24}}{5}+1\right)\)
\(\sin(\theta)=-\frac{\sqrt{24}}{7}\), \(\cos(\theta)=\frac{5}{7}\), \(\tan(\theta)=-\frac{\sqrt{24}}{5}\), \(\csc(\theta)=-\frac{7}{\sqrt{24}}\), \(\sec(\theta)=\frac{7}{5}\) and \(\cot(\theta)=-\frac{5}{\sqrt{24}}\)
- \(\sin(A+B)=\frac{3+\sqrt{960}}{35}\)
- \(\cos(A-B)=\frac{3\sqrt{24}+\sqrt{40}}{35}\)
- Translate \(g\) up by \(4\). Domain is \((-\infty,\infty)\). Range is \((4,\infty)\). Horizontal asymptote at \(y=4\)
- Translate \(g\) right by \(2\), reflect over \(x\)-axis. Domain is \((-\infty,\infty)\). Range is \((-\infty,0)\). Horizontal asymptote at \(y=0\)
- Reflect \(g\) over \(x\)-axis, translate down by \(2\). Domain is \((-\infty,\infty)\). Range is \((-\infty,-2)\). Horizontal asymptote at \(y=-2\)
- Reflect over \(x\)-axis, translate \(g\) up by \(2\). Domain is \((0,\infty)\). Range is \((-\infty,\infty)\). Vertical asymptote at \(x=0\)
- Translate \(g\) right by \(2\). Domain is \((2,\infty)\). Range is \((-\infty,\infty)\). Vertical asymptote at \(x=2\)
- Translate \(g\) left by \(5\), reflect over \(y\)-axis, scale \(y\) by \(2\). Domain is \((-\infty,5)\). Range is \((-\infty,\infty)\). Vertical asymptote at \(x=5\)
- Translate \(g\) up by \(4\). Domain is \((-\infty,\infty)\). Range is \((4,\infty)\). Horizontal asymptote at \(y=4\)
- \(6\)
- \(-24\)
\(A(t)=4\left(\frac{7}{2}\right)^\frac{t-2}{3}\)
- \(m^2-16m+64=0\)
- \(y=8(x-2)+13\)
\(y=-\frac{1}{8}(x-2)+5\)
\(y=\frac{4}{3}\left(x-\frac{1}{3}\right)+4.\)
B-Level
- the graph is given below
- \(\{-4\}\cup[-3,3)\cup(3,4]\cup(5,\infty)\)
- \((-3,0)\cup(0,3)\cup(3,4)\cup(5,\infty)\)
- \((-\infty,-3]\cup\{0\}\cup[4,5)\)
- \((-\infty,-4)\cup(-4,-3)\cup(4,5)\)
- \(\frac{8\ln(2)}{\ln\left(\frac{9}{4}\right)}\)
- \(\frac{\ln\left(\frac{9}{4}\right)}{8}\)
- \(A(t)=t\left\langle \tfrac{4}{\sqrt{65}},\tfrac{7}{\sqrt{65}}\right\rangle+(1,2)\) and \(B(t)=\langle 3\cos\left(2t\right),3\sin\left(2t\right) \rangle+A(t)\)
- \(\sqrt{65}\).
- \(2\)
A-Level
- The sketches \(f\) and \(f^{-1}\) are below
- \(f^{-1}(x)=\begin{cases}\sqrt{x}&\text{ if }0\leq x\leq 1\\-\sqrt{x}&\text{ if }1<x<4\\-\sqrt{x}&\text{ if }9\leq x<16\end{cases}\)
- The sketches \(f\) and \(f^{-1}\) are below
\(y=-(x-2)+5\)
Graph of \(g\) is given below.
- \(y=-4(x-5)+3\)