Dr. Bryan Carrillo’s The Principles of Calculus Website
  • Home
  • About
  • Course Schedule
    • Math 2 Spring 2025 In-Person Schedule
    • Math 3A Spring 2025 In-Person Schedule
  • Course Content
  • Demonstration Questions

On this page

  • Questions
  • Answers
  • Return

Chapter 6.4 Practice

Questions

  1. Take \(f\) to be a differentiable function on \(\mathbb{R}\). A sketch of \(f'\) is given below. Determine all maximal intervals on which \(f\) is increasing and all maximal intervals on which \(f\) is decreasing.

Graph of function x

  1. Take \(f\) to be a differentiable function on \(\mathbb{R}\). A sketch of \(f'\) is given below. Determine all maximal intervals on which \(f\) is increasing and all maximal intervals on which \(f\) is decreasing.

Graph of function x

  1. For each function \(f'\) given, determine all maximal intervals on which \(f\) is increasing and which \(f\) is decreasing:
    1. \(f'(x)=x^2(x+5)^8(x+4)^5\)
    2. \(f'(x)=(x+13)^{12}(x+11)^{10}(x+10)^{2}\)
    3. \(f'(x)=(x+13)^3(x+3)^{15}(x+1)^{9}\)
    4. \(f'(x)=e^x-2\)
    5. \(f'(x)=x^3e^x\)
    6. \(f'(x)=|x|-3\)
  2. For each function \(f\), determine the intervals for which \(f\) is increasing and intervals for which \(f\) is decreasing.
    1. \(f(x)=x^3-\frac{9}{2}x^2-30x-2\)
    2. \(f(x)=6x^4-8x^3-12x^2+24x-3\)
    3. \(f(x)=\frac{x^2}{x^2+9}\)
    4. \(f(x)=(x-1)^{1/3}(x-4)^{2/3}\)
    5. \(f(x)=\sqrt{x}e^{-x}\)
    6. \(f(x)=-\ln(x^2+1)\)
    7. \(f(x)=\cos(\pi x)\)
  3. For each function \(f'\) given below, identify and classify all points at which \(f\) has a local maximum or local minimum.
    1. \(f'(x)=x^2(x+5)^8(x+4)^5\)
    2. \(f'(x)=(x+13)^{12}(x+11)^{10}(x+10)^{2}\)
    3. \(f'(x)=(x+13)^3(x+3)^{15}(x+1)^{9}\)
    4. \(f'(x)=e^x-2\)
    5. \(f'(x)=x^3e^x\)
    6. \(f'(x)=|x|-3\)
  4. For each function \(f\), identify and classify all points at which \(f\) has a local maximum or local minimum.
    1. \(f(x)=x^3-\frac{9}{2}x^2-30x-2\)
    2. \(f(x)=6x^4-8x^3-12x^2+24x-3\)
    3. \(f(x)=\frac{x^2}{x^2+9}\)
    4. \(f(x)=(x-1)^{1/3}(x-4)^{2/3}\)
    5. \(f(x)=\sqrt{x}e^{-x}\)
    6. \(f(x)=-\ln(x^2+1)\)
    7. \(f(x)=\cos(\pi x)\)
    8. \(f(x)=x^3-10x^2+x-10\)
    9. \(f(x)=x^3-3x^2+x-3\)
  5. Take \(f\) to be a differentiable function on \(\mathbb{R}\). A sketch of \(f'\) is given below. Identify and classify all points at which \(f\) has a local maximum or local minimum.

Graph of function x

  1. Take \(f\) to be a differentiable function on \(\mathbb{R}\). A sketch of \(f'\) is given below. Identify and classify all points at which \(f\) has a local maximum or local minimum.

Graph of function x

  1. For each function \(f\) and interval \(I\), identify all critical points and extreme values of \(f\) on \(I.\)

    1. \(f(x)=x^3-3x^2+x-3\); \(I=[0,3]\)
    2. \(f(x)=2x^2+2x+1\); \(I=[-2,2]\)
    3. \(f(x)=\frac{x^3}{(x-2)(x-4)}\); \(I=[3,3.5]\)
  2. For each function \(f\), determine \(f''\).

    1. \(f(x)=2x+1\)
    2. \(f(x)=4x^2+5x+1\)
    3. \(f(x)=\frac{x}{x^2+1}\)
    4. \(f(x)=2^{3x+1}-1\)
    5. \(f(x)=\sin(3x+1)+x\)
    6. \(f(x)=(3x+1)\ln(x)\)
  3. Take \(f\) to be a function so that \[f''(x)=(x+11)^4(x+10)(x+4)^7.\] Identify all maximal intervals on which \(f\) is convex and concave. Identify all inflection points as well.

  4. Take \(f\) to be a function so that \[f''(x)=(x+3)^{12}(x-7)^{14}(x-8)^6.\] Identify all maximal intervals on which \(f\) is convex and concave. Identify all inflection points as well.

  5. For each function \(f\), determine the maximal intervals on which \(f\) is convex and concave. Identify all inflection points as well.

    1. \(f(x)=x^3-\frac{9}{2}x^2-30x-2\)
    2. \(f(x)=(x-3)^3\)
    3. \(f(x)=6x^4-8x^3-12x^2+24x-3\)
    4. \(f(x)=xe^{3x}\)
    5. \(f(x)=\ln(x^2+1)\)
  6. Take \(f\) to be the function defined on \(\mathbb{R}\) with the following properties. Determine the maximal intervals on which \(f\) is convex and concave. Identify all inflection points as well.

    • \(f''\) is positive on \((-\infty,2)\cup(2,6)\cup(9,10)\)
    • \(f''\) is negative on \((6,9)\cup(10,\infty)\)
    • \(f''\) is zero at \(x=2\), \(x=6\), \(x=9\), or \(x=10\)

Answers

  1. Increasing on \((-\infty,3],[4,\infty)\), decreasing on \([3,4]\)

  2. Increasing on \([3,4],[5,6]\), decreasing on \((-\infty,3],[4,5],[6,\infty)\)

    1. Increasing on \([-4,\infty)\), decreasing on \((-\infty,-4]\)
    2. Increasing on \((-\infty,\infty)\)
    3. Increasing on \([-13,-3],[-1,\infty)\), decreasing on \((-\infty,-13],[-3,-1]\)
    4. Increasing on \([\ln(2),\infty)\), decreasing on \((-\infty,\ln(2)]\)
    5. Increasing on \([0,\infty)\), decreasing on \((-\infty,0]\)
    6. Increasing on \((-\infty,-3],[3,\infty)\), decreasing on \([-3,3]\)
    1. Increasing on \((-\infty,-2],[5,\infty)\), decreasing on \((-2,5)\)
    2. Increasing on \([-1,\infty)\), decreasing on \((-\infty,-1]\)
    3. Increasing on \([0,\infty)\), decreasing on \((-\infty,0]\)
    4. Increasing on \((-\infty,2],[4,\infty)\), decreasing on \([2,4]\)
    5. Increasing on \([0,\frac{1}{2}]\), decreasing on \([\frac{1}{2},\infty)\)
    6. Increasing on \((-\infty,0]\), decreasing on \([0,\infty)\)
    7. Increasing on \([2k-1,2k]\) where \(k\) is an integer; decreasing on \([2k,2k+1]\) where \(k\) is an integer
    1. Local max \(x=-4\), no local min
    2. No local max or local min
    3. Local min \(x=-13\), \(x=-1\), local max \(x=-3\)
    4. No local max, local min \(x=\ln(2)\)
    5. No local max, local min \(x=0\)
    6. Local max \(x=-3\), local min \(x=3\)
    1. Local max \(x=-2\), no local min \(x=5\)
    2. No local max, local min \(x=-1\)
    3. No local max, local min \(x=0\)
    4. Local max \(x=2\), local min \(x=4\)
    5. Local max \(x=\frac{1}{2}\)
    6. Local max \(x=0\)
    7. Local max \(x=2k\), where \(k\) is an integer, local min \(x=2k+1\), where \(k\) is an integer
    8. Local max \(x=\frac{20-2\sqrt{97}}{6}\), local min \(x=\frac{20+2\sqrt{97}}{6}\)
    9. Local max \(x=1-\sqrt{\frac{2}{3}}\), local min \(x=1+\sqrt{\frac{2}{3}}\)
  3. Local max \(x=3\), local min \(x=4\)

  4. Local max \(x=4\), \(x=5\), local min \(x=3\), \(x=6\)

    1. critical values at \(x=1-\sqrt{\frac{2}{3}}\) and \(x=1+\sqrt{\frac{2}{3}}\); local max at \(x=1-\sqrt{\frac{2}{3}}\), local min at \(x=1+\sqrt{\frac{2}{3}}\), global max at \(x=0\), global min at \(x=1+\sqrt{\frac{2}{3}}\)
    2. critical value at \(x=-\frac{1}{2}\);local min \(x=-\frac{1}{2}\), global max \(x=2\), global min \(x=-\frac{1}{2}\)
    3. critical value at \(x=6-\sqrt{12}\); local max at \(x=6-\sqrt{12}\), global max at \(x=6-\sqrt{12}\), global min at \(x=3.5\)
    1. \(f''(x)=0\)
    2. \(f''(x)=8\)
    3. \(f''(x)=\frac{2x^3-6x}{(x^2+1)^3}\)
    4. \(f''(x)=9(\ln(2))^22^{3x+1}\)
    5. \(f''(x)=-9\sin(3x+1)\)
    6. \(f''(x)=\frac{3}{x}-\frac{1}{x^2}\)
  5. Convex on \((-\infty,-10],[-4,\infty)\), concave on \([-10,-4]\); inflection points at \(x=-10\),\(x=-4\)

  6. Convex on \((-\infty,\infty)\); no inflection points

    1. Convex on \((\frac{3}{2},\infty)\), concave on \((-\infty,\frac{3}{2})\); inflection point at \(x=\frac{3}{2}\)
    2. Convex on \((3,\infty)\), concave on \((-\infty,3)\); inflection point at \(x=3\)
    3. Convex on \((-\infty,-\frac{1}{3}),(1,\infty)\), concave on \((-\frac{1}{3},1)\); inflection point at \(x=-\frac{1}{3}\), \(x=1\)
    4. Convex on \((-\infty,-\frac{2}{3})\), concave on \((-\infty,-\frac{2}{3})\); inflection point at \(x=-\frac{2}{3}\).
    5. Convex on \((-1,1)\), concave on \((-\infty,-1),(1,\infty)\); inflection at \(x=-1\), \(x=1\).
  7. Convex on \((-\infty,2),(2,6),(9,10)\), concave on \((6,9),(10,\infty)\), inflection point at \(x=6, x=9,x=10\)

Return

  • Return

© Copyright 2025 by the POC Writing Team: Bryan Carrillo, Yat Sun Poon, and David Weisbart. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the POC Writing Team.