Dr. Bryan Carrillo’s The Principles of Calculus Website
  • Home
  • About
  • Course Schedule
    • Math 2 Spring 2025 In-Person Schedule
    • Math 3A Spring 2025 In-Person Schedule
  • Course Content
  • Demonstration Questions

On this page

  • Questions
  • Answers
  • Return

Chapter 5.8 Practice

Questions

  1. For each function \(f\) and \(x_0\) given below, set up a limit to determine \(f^\prime(x_0)\):

    1. \(f(x) = 2x^2-10x+1\), \(x_0 = 2\)
    2. \(f(x) = \frac{x^2 -x}{x+1}\), \(x_0 = 2\)
    3. \(f(x) = 4\sin(x)\), \(x_0 = \frac{\pi}{6}\)
    4. \(f(x) = 3\sqrt{x}\), \(x_0=4\)
    5. \(f(x) = \sqrt{x-1}\), \(x_0 = 10\)
  2. For each function \(f\) that is given below, use limits to calculate \(f^\prime(x)\) for every \(x\) where this limit exists:

    1. \(f(x) = 2x^2-10x+1\)
    2. \(f(x) = \frac{x^2 -x}{x+1}\)
    3. \(f(x) = 4\sin(x)\)
    4. \(f(x) = 3\sqrt{x}\)
    5. \(f(x) = \sqrt{x-1}\)
    6. \(f(x)=-5x^2-5x-3\)
  3. For each function \(f\) that is given below, determine where \(f\) is differentiable and determine \(f^\prime(x).\)

    1. \(f(x)=\tan(x+1)\)
    2. \(f(x)=\cos(-x^2+197)\)
    3. \(f(x)=\sqrt{6x^2+82}\)
    4. \(f(x)=\sin(7x^2+226)\)
    5. \(f(x)=e^{x^2+4x}\)
  4. Take \(f\) to be the function that is given by \[f(x)=\begin{cases}6x^2+bx+c&\text{if }x<19\\ 9x+2&\text{if }x\geq 19.\end{cases}\] Determine \(b\) and \(c\) so that \(f\) is differentiable.

  5. Take \(f\) to be the function that is given by \[f(x)=\begin{cases}-20x^2+bx+c&\text{if }x<-16\\ -4x-11&\text{if }x\geq -16.\end{cases}\] Determine \(b\) and \(c\) so that \(f\) is differentiable.

Answers

    1. \(\Delta_{2}f(h)=2h^2-2h\), so \(f'(2)=\displaystyle \lim_{h\to 0}\frac{1}{h}\Delta_{2}f(h)=-2\)
    2. \(\Delta_{2}f(h)=\frac{3h^2+7}{3h+9}\), so \(f'(2)=\displaystyle \lim_{h\to 0}\frac{1}{h}\Delta_{2}f(h)=\frac{7}{9}\)
    3. \(\Delta_{\frac{\pi}{6}}f(h)=2\left(1-\cos(h)\right)+2\sqrt{3}\sin(h)\), so \(f'( \tfrac{\pi}{6})=\displaystyle \lim_{h\to 0}\frac{1}{h}\Delta_{ \frac{\pi}{6}}f(h)=2\sqrt{3}\)
    4. \(\Delta_{4}f(h)=\frac{9h}{3\sqrt{4+h}+3\sqrt{4}}\), so \(f'( 4)=\displaystyle \lim_{h\to 0}\frac{1}{h}\Delta_{ 4}f(h)=\frac{3}{4}\)
    5. \(\Delta_{10}f(h)=\frac{h}{\sqrt{9+h}+\sqrt{9}}\), so \(f'( 10)=\displaystyle \lim_{h\to 0}\frac{1}{h}\Delta_{ 10}f(h)=\frac{1}{6}\)
    1. \(f'(x)=4x-10\)
    2. \(f'(x)=\frac{x^2+2x-1}{(x+1)^2}\)
    3. \(f'(x)=4\cos(x)\)
    4. \(f'(x)=\frac{3}{2\sqrt{x-1}}\)
    5. \(f'(x)=\frac{1}{2\sqrt{x-1}}\)
    6. \(f'(x)=-10x-5\)
    1. \(f'(x)=\sec^2(x+1)\) all \(x\not=\frac{\pi}{2}k-1\) where \(k\) is an integer
    2. \(f'(x)=2x\sin(-x^2+197)\) for all \(x\) in \(\mathbb{R}\)
    3. \(f'(x)=\frac{6x}{\sqrt{6x^2+82}}\) for all \(x\) in \(\mathbb{R}\)
    4. \(f'(x)=14x\cos(7x^2+226)\) for all \(x\) in \(\mathbb{R}\)
    5. \(f(x)=(2x+4)e^{x^2+4x}\) for all \(x\) in \(\mathbb{R}\)
  1. \(b=-219\) and \(c=2168\).

  2. \(b=-644\) and \(c=-5131\).

Return

  • Return

© Copyright 2025 by the POC Writing Team: Bryan Carrillo, Yat Sun Poon, and David Weisbart. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the POC Writing Team.