Chapter 5.6 Practice
Questions
Take \(f\) to be a function with the property that \[ \lim_{x\to 4^+}f(x)=1\quad\text{and}\quad \lim_{x\to 4^-}f(x)=1.\] Determine a value for \(f(4)\) so that \(f\) is continuous at \(4.\)
For each of these choices of function \(f\) and real number \(x_0\), determine whether \(f\) is continuous at \(x_0\).
- \(f(x)=-3x+1\), \(x_0=1\)
- \(f(x)=\frac{x}{x+1}\), \(x_0=0\)
- \(f(x)=\frac{x}{x+1}\), \(x_0=-1\)
- \(f(x)=\sqrt{x-2}\), \(x_0=2\)
- \(f(x)=\sin(x)\), \(x_0=1\)
- \(f(x)=\exp(x)\), \(x_0=-3\)
- \(f(x)=\ln(x)\), \(x_0=1\)
- \(f(x)=\ln(x)\), \(x_0=0\)
- \(f(x)=\begin{cases}(x-3)\sin\left(\frac{1}{x-3}\right)&\text{if }x\not=3\\0&\text{if }x=3\\\end{cases}\), \(x_0=3\)
- \(f(x)=\begin{cases}x-4&\text{if }x<5\\4&\text{if }x=5\\\log_4(9-x) &\text{if }x>5\\\end{cases}\), \(x_0=5\)
- \(f(x)=\begin{cases}\cos\left(\frac{1}{x-2}\right)&\text{if }x\leq 2\\ 4x^2+3 &\text{if }x>2\\\end{cases}\), \(x_0=5\)
For each function below, identify the maximal set \(S\) for which \(f\) is continuous. Then, determine if there is a continuous extension of \(f\) to \(\mathbb{R}\) or some set \(S'\) so that \(S\) is a proper subset of \(S'.\)
- \(f(x)=x^2\)
- \(f(x)=\log_2(x^2+1)\)
- \(f(x)=\ln((x-3)^2)\)
- \(f(x)=\frac{x-5}{x^2-25}\)
- \(f(x)=\frac{x^2-25}{x-5}\)
- \(f(x)=\frac{\sin(4(x-3))}{x-3}\)
- \(f(x)=\frac{\cos(4(x-3))}{x-3}\)
- \(f(x)=\frac{1-\cos(x-5)}{x-5}\)
- \(f(x)=\frac{1-\cos(x^2-25)}{x^2-25}\)
- \(f(x)=\sqrt{\frac{x-1}{x^2-1}}\)
For each function \(f\) given below and domain \(S\), determine whether \(f\) attains its minimum value on \(S\) or its maximum value on \(S\).
- \(f(x)=4x+1\), \(S=[1,4]\)
- \(f(x)=x^2+5\), \(S=[0,4)\)
- \(f(x)=\frac{(x+2)}{(x-2)(x+5)}\), \(S=(-2,2)\)
- \(f(x)=\frac{(x+2)}{(x-2)(x+5)}\), \(S=[-2,2)\)
For each function \(f\) and real number \(C\), determine whether the Intermediate Value Theorem guarantees that there is an \(x_0\) in the given set \(S\) so that \(f(x_0)=C.\)
- \(f(x)=x^2+1\), \(S=[-2,5]\), \(C=10\)
- \(f(x)=x^2+1\), \(S=[-2,5]\), \(C=65\)
- \(f(x)=\exp(x)\), \(S=[0,1]\), \(C=2\)
- \(f(x)=x+2\), \(S=[-1,3]\), \(C=2\)
For each of these choices of function \(f\), decompose \(f\) into sums, products, and quotients of continuous functions to determine where \(f\) is continuous.
- \(f(x)=\frac{x(x-1)}{x^2+1}\)
- \(f(x)=\frac{x(x-1)}{x^2-1}\)
- \(f(x)=\frac{\sqrt{1-x}}{(x+3)(x-3)}\)
- \(f(x)=x^2\sin\left(x^2-5\right)\)
- \(f(x)=\cos(x)e^\frac{x-1}{x+2}\)
- \(f(x)=\sqrt{x^2+1}+5\ln(x-1)\)
- \(f(x)=\ln(-e^x+3)\)
For each of these choices of function \(f\) and real value \(x_0\), decompose \(f\) as a compound function to determine \(\displaystyle \lim_{x\to x_0}f(x)\)
- \(f(x)=\exp\left(\frac{x^2+2x-8}{x-2}\right)\), \(x_0=-4\)
- \(f(x)=\exp\left(\frac{x^2+2x-8}{x-2}\right)\), \(x_0=2\)
- \(f(x)=\ln\left(\frac{\sin(3x)}{x}\right)\), \(x_0=0\)
- \(f(x)=\sqrt{\frac{1-\cos(x)}{x}}\), \(x_0=0\)
- \(f(x)=\sqrt{\frac{1-\cos(x)}{x^2}}\), \(x_0=0\)
Construct a function \(f\) such that
- \(f\) is defined on \(\mathbb{R}\)
- \(f\) is continuous everywhere except at \(2\)
- \(\displaystyle\lim_{x\to 2^-}f(x)=3\)
- \(\displaystyle\lim_{x\to 2^+}f(x)=2\)
- \(f\) is asymptotically equal to \(5x^3\) to the right
- \(f\) has a horizontal asymptote of \(\frac{1}{2}\)
For the function \(f\) given below, determine \(a\) and \(b\) so that is continuous on \(\mathbb{R}.\) \[f(x)=\begin{cases}2x+a&\text{if }x<-1\\ 5x&\text{if }-1\leq x<b\\ 2x+2&\text{if }b\leq x\end{cases}\]
For each equation and interval \(I\) given below, explain the existence of a solution to the equation in the interval \(I\):
- \(x^2-\frac{1}{2}=0\), \(I=(0,1)\)
- \(x^3-15=0\), \(I=(2,3)\)
- \(\sqrt{x}-\cos(x)=0\), \(I=(0,\pi)\)
Answers
\(f(4)=1\)
- Yes
- Yes
- No
- Yes
- Yes
- Yes
- Yes
- No
- Yes
- Yes
- No
- \(S=\mathbb{R}\). There is a continuous extension to \(\mathbb{R}\); it is the function itself: \(\tilde{f}=f\)
- \(S=\mathbb{R}\). There is a continuous extension to \(\mathbb{R}\); it is the function itself: \(\tilde{f}=f\)
- \(S=(-\infty,3)\cup(3,\infty)\). There is a no continuous extension to \(\mathbb{R}\) nor some set \(S'\) so that \(S\) is a proper subset of \(S'\)
- \(S=(-\infty,-5)\cup(-5,5)\cup(5,\infty)\). There is no continuous extension to \(\mathbb{R}\) but there is a continuous extension to \(S'=(-\infty,5)\cup(5,\infty):\) \[\tilde{f}(x)=\begin{cases}\frac{x-5}{x^2-25} &\text{if } x<-5\\ \frac{x-5}{x^2-25} &\text{if } -5<x<5\\ \frac{1}{10}&\text{if } x=5\\ \frac{x-5}{x^2-25} &\text{if } x>5\end{cases}\]
- \(S=(-\infty,5)\cup(5,\infty)\). There is a continuous extension to \(\mathbb{R}:\) \[\tilde{f}(x)=\begin{cases}\frac{x^2-25}{x-5} &\text{if } x\not=5\\ 10&\text{if } x=5\end{cases}\]
- \(S=(-\infty,3)\cup(3,\infty)\). There is a continuous extension to \(\mathbb{R}:\) \[\tilde{f}(x)=\begin{cases}\frac{\sin(4(x-3))}{x-3} &\text{if } x\not=3\\ 4&\text{if } x=3\end{cases}\]
- \(S=(-\infty,3)\cup(3,\infty)\). There is a no continuous extension to \(\mathbb{R}\) nor some set \(S'\) so that \(S\) is a proper subset of \(S'\)
- \(S=(-\infty,5)\cup(5,\infty)\). There is a continuous extension to \(\mathbb{R}:\) \[\tilde{f}(x)=\begin{cases}\frac{1-\cos(x-5)}{x-5} &\text{if } x\not=5\\ 0&\text{if } x=5\end{cases}\]
- \(S=(-\infty,-5)\cup(-5,5)\cup(5,\infty)\). There is a continuous extension to \(\mathbb{R}:\) \[\tilde{f}(x)=\begin{cases}\frac{1-\cos(x^2-25)}{x^2-25} &\text{if } x<-5\\ 0 &\text{if } x=-5\\\frac{1-\cos(x^2-25)}{x^2-25} &\text{if } -5<x<5\\ 0 &\text{if } x=5\\ \frac{1-\cos(x^2-25)}{x^2-25} &\text{if } x>5\end{cases}\]
- \(S=(-1,1)\cup(1,\infty)\). There is no continuous extension to \(\mathbb{R}\), but there is a continuous extension to \(S'=(-1,\infty).\) \[\tilde{f}(x)=\begin{cases}\sqrt{\frac{x-1}{x^2-1}} &\text{if }-1<x<1\\ \frac{\sqrt{2}}{2} &\text{if } x=1\\ \sqrt{\frac{x-1}{x^2-1}} &\text{if } x>1\end{cases}\]
- Yes, both maximum and minimum
- Yes to minimum, no to maximum
- No to both
- Yes to minimum, no to maximum
- Yes, since \(f\) is continuous on \(S\), \(f(-2)=5\), \(f(5)=26\), and \(C=10\) is in \([f(-2),f(26)],\) so the intermediate value theorem applies.
- No, because \(C=26\) is not in \([f(-2),f(26)]\) so there is no guarantee that the equality \(f(x)=C\) has a solution.
- Yes, since \(f\) is continuous on \(S\), \(f(0)=1\), \(f(1)=e\), and \(C=2\) is in \([f(0),f(1)],\) so the intermediate value theorem applies.
- Yes, since \(f\) is continuous on \(S\), \(f(-1)=1\), \(f(3)=5\), and \(C=2\) is in \([f(-1),f(3)],\) so the intermediate value theorem applies.
- Continuous on \(\mathbb{R}\)
- Continuous on \((-\infty,-1)\cup(-1,1)\cup(1,\infty)\)
- Continuous on \((-\infty,-3)\cup(-3,-1]\)
- Continuous on \(\mathbb{R}\)
- Continuous on \((-\infty,-2)\cup(-2,\infty)\)
- Continuous \((1,\infty)\)
- Continuous \((\ln(3),\infty)\)
- \(\displaystyle\lim_{x\to -4}\exp\left(\frac{x^2+2x-8}{x-2}\right)=1\)
- \(\displaystyle\lim_{x\to 2}\exp\left(\frac{x^2+2x-8}{x-2}\right)=e^6\)
- \(\displaystyle\lim_{x\to 0}\ln\left(\frac{\sin(3x)}{x}\right)=\ln(3)\)
- \(\displaystyle\lim_{x\to 0}\sqrt{\frac{1-\cos(x)}{x}}=0\)
- \(\displaystyle\lim_{x\to 0}\sqrt{\frac{1-\cos(x)}{x^2}}=\frac{\sqrt{2}}{2}\)
There are many possible answers. Here is one possibility. \[f(x)=\begin{cases}\frac{x+3}{2x^2+1}&\text{if } x\leq -2\\ \frac{13}{18}(x-2)+3 &\text{if }-2<x\leq 3\\ 3(x-3)+2&\text{if }3<x<5\\ 5(x-5)^3+8&\text{if }x\geq 5\end{cases}\]
\(a=-3\) and \(b=\frac{2}{3}\)
- \(f(x)=x^2-\frac{1}{2}\) is continuous \([0,1]\), \(f(0)=-\frac{1}{2}\) and \(f(1)=\frac{1}{2}\); since \(0\) is in \([f(0),f(1)]\), by the intermediate value theorem, \(f(x)=0\) has a solution in \((0,1).\)
- \(f(x)=x^3-15\) is continuous \([2,3]\), \(f(2)=-7\) and \(f(3)=12\); since \(0\) is in \([f(2),f(3)]\), by the intermediate value theorem, \(f(x)=0\) has a solution in \((2,3).\)
- \(f(x)=\sqrt{x}-\cos(x)\) is continuous \([0,\pi]\), \(f(0)=-1\) and \(f(\pi)=1+\sqrt{\pi}\); since \(0\) is in \([f(0),f(\pi)]\), by the intermediate value theorem, \(f(x)=0\) has a solution in \((0,\pi).\)