Dr. Bryan Carrillo’s The Principles of Calculus Website
  • Home
  • About
  • Course Schedule
    • Math 2 Spring 2025 In-Person Schedule
    • Math 3A Spring 2025 In-Person Schedule
  • Course Content
  • Demonstration Questions

On this page

  • Questions
  • Answers
  • Return

Chapter 5.5 Practice

Questions

  1. Use the sequential definition of a limit to determine which of the limits below exist and which do not exist.

    1. \(\displaystyle\lim_{x\to -3}(x^3+2x+11)\)
    2. \(\displaystyle\lim_{x\to 4}\frac{x^2-16}{x-4}\)
    3. \(\displaystyle\lim_{x\to 0}\cos\left(\frac{1}{x}\right)\)
  2. Determine the following limits:

    1. \(\displaystyle\lim_{x\to 9}4\sqrt{x}\)
    2. \(\displaystyle\lim_{x\to 4}\left(11+\frac{1}{x}\right)\)
    3. \(\displaystyle\lim_{x\to 1}\frac{\cos(x-1)+2x^3}{(x+1)^2}\)
    4. \(\displaystyle\lim_{x\to 6}\sqrt{x^2+1}\)
    5. \(\displaystyle\lim_{x\to 6}\frac{x-6}{x^2+36}\)
    6. \(\displaystyle\lim_{x\to 6}\frac{x-6}{x^2-36}\)
    7. \(\displaystyle\lim_{x\to 0}\frac{\sin(4x)}{10x}\)
    8. \(\displaystyle\lim_{x\to 0}\frac{\tan(x)}{10x}\)
  3. Determine the following limit by using squeeze theorem

    1. \(\displaystyle\lim_{x\to 0}10x^2\sin\left(\frac{1}{x}\right)\)
    2. \(\displaystyle\lim_{x\to 3^-}(x-3)f(x),\) where \(f\) is a function defined on \((-\infty,3)\cup(3,\infty)\) and \(\frac{1}{x-3}\leq f(x)\leq \frac{2^{x-3}}{x-3}\) for all \(x\not=3.\)
    3. \(\displaystyle\lim_{x\to 0}5x^2e^{\sin\left(\frac{1}{x}\right)}\)
  4. Let \(g\) be a function defined on \([-6,3)\cup(3,8]\) whose graph is given below. Calculate the following:

    1. \(\displaystyle\lim_{x\to -4^-}g(x)\)
    2. \(\displaystyle\lim_{x\to -4^+}g(x)\)
    3. \(\displaystyle\lim_{x\to -4}g(x)\)
    4. \(g(-4)\)
    5. Is \(\displaystyle\lim_{x\to -4}g(x)=g(-4)?\)
    6. \(\displaystyle\lim_{x\to 1^-}g(x)\)
    7. \(\displaystyle\lim_{x\to 1^+}g(x)\)
    8. \(\displaystyle\lim_{x\to 1}g(x)\)
    9. \(\displaystyle g(1)\)
    10. Is \(\displaystyle\lim_{x\to 1}g(x)=g(1)?\)
    11. \(\displaystyle\lim_{x\to 6^-}g(x)\)
    12. \(\displaystyle\lim_{x\to 6^+}g(x)\)
    13. \(\displaystyle\lim_{x\to 6}g(x)\)
    14. \(\displaystyle g(6)\)
    15. Is \(\displaystyle \lim_{x\to 6}g(x)=g(6)?\)
  5. Take \(f\) to be the function that is given by \[f(x)=\begin{cases}\frac{x-2}{x^2-4}&\text{if }x<2\\\log_{16}(x)&\text{if }x\geq 2\end{cases}.\]

    1. Evaluate \(\displaystyle\lim_{x\to 2^{-}}f(x)\).
    2. Evaluate \(\displaystyle\lim_{x\to 2^{+}}f(x)\).
    3. Does \(\displaystyle\lim_{x\to 2}f(x)\) exist? If so, evaluate this limit. If not, explain why.
  6. Take \(b\) to be a real number and \(f\) to be the function that is given by \[f(x)=\begin{cases}\exp_3(x)&\text{if }x\leq 3\\bx^2+4&\text{if }x> 3\end{cases}.\] Determine a value for \(b\) so that \(\displaystyle\lim_{x\to 2}f\) exists.

  7. Evaluate the following limits. If they do not exist, state so.

    1. \(\displaystyle\lim_{x\to\infty}\frac{9x^2-20x+4}{15x^2+x+1}\)
    2. \(\displaystyle\lim_{x\to\infty}\frac{x^6+x^5+3x^2+4x+1}{3x^4+x^2+x+1}\)
    3. \(\displaystyle\lim_{x\to\infty}(3\cos(4x))\)
    4. \(\displaystyle\lim_{x\to\infty}\frac{3x}{x^2+3x+1}\)
    5. \(\displaystyle\lim_{x\to\infty}5^{x}+2\)
    6. \(\displaystyle\lim_{x\to-\infty}5^{x}+2\)
    7. \(\displaystyle\lim_{x\to\infty}\frac{1}{x}\sin(x)\)
    8. \(\displaystyle\lim_{x\to-\infty}\frac{1}{x}\sin(x)\)
  8. For each rational function \(f\), determine all vertical and horizontal asymptotes. Write your answers using the appropriate limit notation. It may be helpful to sketch \(f\).

    1. \(\displaystyle f(x)=\frac{(x-2)(x+4)}{x-3}\)
    2. \(\displaystyle f(x)=\frac{(x-2)}{x(x+4)}\)
    3. \(\displaystyle f(x)=\frac{6x-2}{3x+5}\)
  9. Take \(c\) to be the path that is given by \[c(t)=\left(3t-1,(t-2)\sin\left(\frac{1}{t-2}\right)\right).\] Determine which of these limits exist and evaluate all those that exist:

    1. \(\displaystyle\lim_{t\to 1}c(t)\)
    2. \(\displaystyle\lim_{t\to 2}c(t)\)
    3. \(\displaystyle\lim_{t\to \frac{1}{3}}c(t)\)

Answers

    1. \(\displaystyle\lim_{x\to -3}(x^3+2x+11)=-22\)
    2. \(\displaystyle\lim_{x\to 4}\frac{x^2-16}{x-4}=8\)
    3. Limit does not exist.
    1. \(\displaystyle\lim_{x\to 9}4\sqrt{x}=12\)
    2. \(\displaystyle\lim_{x\to 4}\left(11+\frac{1}{x}\right)=11+\frac{1}{4}\)
    3. \(\displaystyle\lim_{x\to 1}\frac{\cos(x-1)+2x^3}{(x+1)^2}=\frac{3}{4}\)
    4. \(\displaystyle\lim_{x\to 6}\sqrt{x^2+1}=\sqrt{37}\)
    5. \(\displaystyle\lim_{x\to 6}\frac{x-6}{x^2+36}=0\)
    6. \(\displaystyle\lim_{x\to 6}\frac{x-6}{x^2-36}=\frac{1}{12}\)
    7. \(\displaystyle\lim_{x\to 0}\frac{\sin(4x)}{10x}=\frac{2}{5}\)
    8. \(\displaystyle\lim_{x\to 0}\frac{\tan(x)}{10x}=\frac{1}{10}\)
    1. \(\displaystyle\lim_{x\to 0}10x^2\sin\left(\frac{1}{x}\right)=0;\) use squeeze theorem. First bound sine and then multiply the upper and lower bound by \(10x^2.\) Continue from there.
    2. \(\displaystyle\lim_{x\to 3^-}(x-3)f(x)=1;\) Use sequence theorem. Start with the inequality given, \(\frac{1}{x-3}\leq f(x)\leq \frac{2^{x-3}}{x-3}\) and multiply all sides of the inequality by \((x-3)\) to get \(1\leq (x-3)f(x)\leq 2^{x-3}.\) This is your upper and lower bound. Finish the problem.
    3. \(\displaystyle\lim_{x\to 0}5x^2e^{\sin\left(\frac{1}{x}\right)}=0;\) use squeeze theorem. First bound sine, which in term will bound the exponential term. Then multiply the upper and lower bound by \(10x^2.\) Continue from there.
    1. \(\displaystyle\lim_{x\to -4^-}g(x)=0\)
    2. \(\displaystyle\lim_{x\to -4^+}g(x)=-1.5\)
    3. DNE
    4. \(g(-4)=0\)
    5. No
    6. \(\displaystyle\lim_{x\to 1^-}g(x)-1\)
    7. \(\displaystyle\lim_{x\to 1^+}g(x)=1\)
    8. \(\displaystyle\lim_{x\to 1}g(x)=1\)
    9. \(\displaystyle g(1)=0\)
    10. No
    11. \(\displaystyle\lim_{x\to 6^-}g(x)=-1\)
    12. DNE
    13. DNE
    14. \(\displaystyle g(6)=-1\)
    15. No.
    1. \(\frac{1}{4}\)
    2. \(\frac{1}{4}\).
    3. Yes and the limit is equal to \(\frac{1}{4}\) because the left-hand and right-hand limit are both equal to \(\frac{1}{4}.\)
  1. \(b=\frac{77}{9}.\)

    1. \(9\)
    2. \(\infty\)
    3. DNE
    4. \(0\)
    5. \(\infty\)
    6. \(2\)
    7. \(0\)
    8. \(0\)
    1. No horizontal asymptote because \(\displaystyle\lim_{x\to\infty} f(x)=\lim_{x\to\infty}\frac{(x-2)(x+4)}{x-3}=\infty\) and \(\displaystyle\lim_{x\to-\infty} f(x)=\lim_{x\to\infty}\frac{(x-2)(x+4)}{x-3}=-\infty\). There is one vertical asymptote at \(x=3\), due to \(\displaystyle \lim_{x\to 3^-}f(x)=\displaystyle\lim_{x\to 3^{-}}\frac{(x-2)(x+4)}{x-3}=-\infty\) and \(\displaystyle \lim_{x\to 3^+}f(x)=\displaystyle\lim_{x\to 3^{-}}\frac{(x-2)(x+4)}{x-3}=\infty\)
    2. Horizontal asymptote at \(y=0\) because \(\displaystyle \lim_{x\to\infty} f(x)=\lim_{x\to\infty}\frac{(x-2)}{x(x+4)}=0\) and \(\displaystyle \lim_{x\to-\infty} f(x)=\lim_{x\to-\infty}\frac{(x-2)}{x(x+4)}=0.\) There are two vertical asymptotes. One at \(x=-4\) because \(\displaystyle \lim_{x\to -4^-} f(x)=\lim_{x\to -4^-}\frac{(x-2)}{x(x+4)}=-\infty\) and \(\displaystyle \lim_{x\to -4^+} f(x)=\lim_{x\to -4^+}\frac{(x-2)}{x(x+4)}=\infty\). The other at \(x=0\) because \(\displaystyle \lim_{x\to 0^-} f(x)=\lim_{x\to 0^-}\frac{(x-2)}{x(x+4)}=\infty\) and \(\displaystyle \lim_{x\to 0^+} f(x)=\lim_{x\to 0^+}\frac{(x-2)}{x(x+4)}=-\infty\).
    3. Horizontal asymptote at \(y=2\) because \(\displaystyle \lim_{x\to\infty} f(x)=\lim_{x\to\infty}\frac{6x-2}{3x+5}=2\) and \(\displaystyle \lim_{x\to-\infty} f(x)=\lim_{x\to-\infty}\frac{6x-2}{3x+5}=2\). There is one vertical asymptote at \(x=-\frac{5}{3}\) because \(\displaystyle\lim_{x\to-\frac{5}{3}^-}f(x)=\infty\) and \(\displaystyle\lim_{x\to-\frac{5}{3}^+}f(x)=-\infty\)
    1. \((2,\sin(1))\)
    2. \((5,0)\)
    3. \((0,\frac{5}{3}\sin\left(\frac{3}{5}\right)\)

Return

  • Return

© Copyright 2025 by the POC Writing Team: Bryan Carrillo, Yat Sun Poon, and David Weisbart. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the POC Writing Team.