Chapter 5.4 Practice
Questions
Suppose that \((\theta_n)\) is a null sequence with only nonzero terms. Calculate \[\lim_{n\to\infty} \tfrac{\sin(5\theta_n)}{6\theta_n}.\]
Suppose that \((\theta_n)\) is a null sequence with only nonzero terms. Calculate \[\lim_{n\to\infty} \tfrac{3-3\cos(\theta_n)}{\theta_n}.\]
Calculate the following limits. Carefully justify your reasoning.
- \(\displaystyle\lim_{n\to\infty} \frac{\sin(\frac{3}{n})}{\frac{6}{n}}\)
- \((\theta_n)\) is a null sequence with only nonzero terms; \(\displaystyle\lim_{n\to\infty} \frac{\tan(\theta_n)}{\theta_n}.\)
- \(\displaystyle\lim_{n\to\infty} \frac{\sin(-\frac{3}{n^2})}{\frac{8}{n^2}}\)
- \(\displaystyle\lim_{n\to\infty} \frac{\sin(-7e^{-n})}{\sin(-6e^{-n})}\)
- \(\displaystyle\lim_{n\to\infty} \frac{1-\cos\left(\frac{7}{n}\right)}{\frac{1}{n^2}}\)
Answers
\(\frac{5}{6}\)
\(0\)
- \(\frac{1}{2}\)
- \(1\)
- \(-\frac{3}{8}\)
- \(-\frac{7}{6}\)
- \(\frac{49}{2}\)