Dr. Bryan Carrillo’s The Principles of Calculus Website
  • Home
  • About
  • Course Schedule
    • Math 2 Spring 2025 In-Person Schedule
    • Math 3A Spring 2025 In-Person Schedule
  • Course Content
  • Demonstration Questions

On this page

  • Questions
  • Answers
  • Return

Chapter 5.3 Practice

Questions

  1. Suppose that \((\theta_n)\) is a null sequence with only nonzero terms. Calculate \(\lim_{n\to\infty} \tfrac{\sin(5\theta_n)}{6\theta_n}.\)

  2. Suppose that \((\theta_n)\) is a null sequence with only nonzero terms. Calculate \(\lim_{n\to\infty} \tfrac{3-3\cos(\theta_n)}{\theta_n}.\)

  3. Calculate the following limits. Carefully justify your reasoning.

    1. \(\displaystyle\lim_{n\to\infty} \frac{\sin(\frac{3}{n})}{\frac{6}{n}}\)
    2. \((\theta_n)\) is a null sequence with only nonzero terms; \(\displaystyle\lim_{n\to\infty} \frac{\tan(\theta_n)}{\theta_n}.\)
    3. \(\displaystyle\lim_{n\to\infty} \frac{\sin(-\frac{3}{n^2})}{\frac{8}{n^2}}\)
    4. \(\displaystyle\lim_{n\to\infty} \frac{\sin(-7e^{-n})}{\sin(-6e^{-n})}\)
    5. \(\displaystyle\lim_{n\to\infty} \frac{1-\cos\left(\frac{7}{n}\right)}{\frac{1}{n^2}}\)

Answers

  1. \(\frac{5}{6}\)

  2. \(0\)

    1. \(\frac{1}{2}\)
    2. \(1\)
    3. \(-\frac{3}{8}\)
    4. \(-\frac{7}{6}\)
    5. \(\frac{49}{2}\)

Return

  • Return

© Copyright 2025 by the POC Writing Team: Bryan Carrillo, Yat Sun Poon, and David Weisbart. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the POC Writing Team.