Section 5.2 Practice
\[ \definecolor{ucrblue}{rgb}{0.0627,0.3843,0.6039} \definecolor{ucrgold}{rgb}{0.9686,0.6941,0.2824} \definecolor{ucrred}{rgb}{0.8941,0,0.1686} \definecolor{ucrgreen}{rgb}{0.4706,0.7451,0.1255} \definecolor{ucraccent}{rgb}{1.0000,0.9569,0.8392} \DeclareMathOperator*{\LO}{O} \DeclareMathOperator*{\Lo}{o} \DeclareMathOperator*{\Recip}{Recip} \DeclareMathOperator*{\abs}{abs} \DeclareMathOperator{\pow}{pow} \]
Questions
Show that each sequence \((a_n)\) is increasing:
- \(a_n=\tfrac{n}{n+2}\)
- \(a_n=\tfrac{3n-1}{2n+1}\)
- \(a_n=\tfrac{n^2}{n+2}\)
Show that each sequence \((a_n)\) is decreasing:
- \(a_n=\tfrac{n+3}{n+1}\)
- \(a_n=\tfrac{n+1}{5n+1}\)
- \(a_n=\tfrac{n}{n^2+1}\)
Identify a sequence \((a_n)\) with the following properties:
- \((a_n)\) is strictly increasing and converges to \(2.\)
- \((a_n)\) is strictly decreasing and converges to \(-4.\)
- \((a_n)\) is strictly decreasing and converges to \(1.\)
- \((a_n)\) is strictly increasing and converges to \(\frac{2}{3}.\)
Calculate the following limits. Carefully justify your reasoning.
- \(\displaystyle\lim_{n\to\infty}\sqrt{4+\frac{1}{n}}\)
- \(\displaystyle\lim_{n\to\infty}\sqrt{25+\frac{1}{n}}\)
- \(\displaystyle\lim_{n\to\infty}\sqrt[3]{8+\frac{1}{n}}\)
Take \((a_n)\), \((b_n)\), and \((c_n)\) to be sequences with \[ \lim_{n\to\infty}a_n = 1, \quad \lim_{n\to\infty}b_n = -1, \quad {\rm and} \quad \lim_{n\to\infty}c_n = 11.\] Use the limit laws to compute the following:
- \(\displaystyle \lim_{n\to\infty}(a_nb_n+3c_n)\)
- \(\displaystyle \lim_{n\to\infty}\left(b_n^2-\frac{b_n-2}{c_n}\right)\)
- \(\displaystyle \lim_{n\to\infty}\left(\tfrac{a_n+b_n}{c_n+(b_n)^2}\right)\)
For each sequence \((a_n)\), use the limit laws to determine \(\displaystyle\lim_{n\to\infty}a_n\):
- \(a_n=5\left(3+\frac{7}{n}\right)\)
- \(a_n=12\)
- \(a_n=\left(\frac{1}{2}\right)^n+5\)
- \(a_n=3^{-n}+2\)
Use the limit laws to determine the following limits:
- \(\displaystyle \lim_{n\to\infty}\tfrac{-4n+4}{5n+1}\)
- \(\displaystyle \lim_{n\to\infty}\tfrac{4n^3+5n^2+2n-1}{8n^3-n}\)
- \(\displaystyle \lim_{n\to\infty}\tfrac{n^3}{n^6-2n^2-3n-4}\)
Calculate the following limits. Carefully justify your reasoning.
- \(\displaystyle\lim_{n\to \infty} n\left(\sqrt{4+\frac{1}{n}} - 2 \right)\)
- \(\displaystyle\lim_{n\to \infty} n\left(\sqrt{25+\frac{1}{n}} - 5 \right)\)
- \(\displaystyle\lim_{n\to\infty}\left(2^n+3^n\right)^\frac{1}{n}\)
Take \((a_n)\) to be a strictly decreasing sequence that is convergent to \(-10\) and take \(f\) to be the function that is given by \[ f(x)= \begin{cases} 7x^2-6&\text{if }x <-10\\ -9&\text{if }x=-10\\ \frac{5x}{10x^2-10}&\text{if }x>-10. \end{cases} \] Determine the quantity \(\lim\limits_{n\to\infty}f(a_n)\).
Take \((a_n)\) to be a strictly decreasing sequence that converges to \(0\), \((b_n)\) to be a strictly increasing sequence that converges to \(8\), and \(f\) to be the function given by \[ f(x)= \begin{cases} 5x+1&\text{if }-1\leq x <0\\ x^2-1&\text{if }0 < x \leq 8\\ \sqrt{x}&\text{if }8<x\leq 10 \end{cases} \] Determine the limit of the sequences \((f(a_n))\), and \((f(b_n))\).
For each sequence \((a_n)\) and real number \(L\), use the Archimedean property to show that for any positive real number \(\varepsilon\), there is a natural number \(N\) so that if \(n\) is greater than or equal to \(N\), then \(|a_n-L|<\varepsilon\).
- \(a_n= \frac{1}{n+2}\), \(L=0\)
- \(a_n= \frac{4}{n^2+2n}\), \(L=0\)
- \(a_n=\frac{2n+1}{4n+1}\), \(L=\tfrac{1}{2}\)
- \(a_n=\sqrt{81+\frac{1}{n^2}}\), \(L=9\).
Identify which of the following limits are of indeterminate form and the form.
- \(\lim_\limits{n\to\infty}\frac{n+1}{n+2}\)
- \(\lim_\limits{n\to\infty}\frac{1}{n+2}\)
- \(\lim_\limits{n\to\infty}\frac{\arctan(n)}{n+2}\)
- \(\lim_\limits{n\to\infty}\mathrm{e}^n\)
- \(\lim_\limits{n\to\infty}\left(\mathrm{e}^n-\ln(n)\right)\)
- \(\lim_\limits{n\to\infty}\left(\mathrm{e}^{-n}-\ln(n)\right)\)
- \(\lim_\limits{n\to\infty}\left(\mathrm{e}^{-n}\ln(n)\right)\)
- \(\lim_\limits{n\to\infty}\frac{\arctan\left(\frac{1}{n}\right)}{\sin\left(\frac{1}{n}\right)}\)
Answers
The following are brief key points you need to show in your argument for each part. You will need to fill in the details in your responses.
- Show \(a_{n+1}-a_n>0\) by calculating \(a_{n+1}-a_{n}\). The difference is \(a_{n+1}-a_{n}=\frac{2}{(n+2)(n+3)}.\)
- Show \(a_{n+1}-a_n>0\) by calculating \(a_{n+1}-a_{n}\). The difference is \(a_{n+1}-a_{n}=\frac{5}{(2n+1)(2n+3)}.\)
- Show \(a_{n+1}-a_n>0\) by calculating \(a_{n+1}-a_{n}\). The difference is \(a_{n+1}-a_{n}=\frac{n^2+5n+2}{(n+2)(n+3)}.\)
The following are brief key points you need to show in your argument for each part. You will need to fill in the details in your responses.
- Show \(a_{n}-a_{n+1}>0\) by calculating \(a_{n}-a_{n+1}\). The difference is \(a_{n}-a_{n+1}=\frac{2}{(n+1)(n+2)}.\)
- Show \(a_{n}-a_{n+1}>0\) by calculating \(a_{n}-a_{n+1}\). The difference is \(a_{n}-a_{n+1}=\frac{4}{(5n+1)(5n+6)}.\)
- Show \(a_{n}-a_{n+1}>0\) by calculating \(a_{n}-a_{n+1}\). The difference is \(a_{n}-a_{n+1}=\frac{n^2+n-1}{(n^2+1)(n^2+2n+2)}.\)
Answers may vary,
- \(a_n=2-\frac{1}{n}\)
- \(a_n=-4+\frac{1}{n}\)
- \(a_n=1+\frac{1}{n}\)
- \(a_n=\frac{2}{3}-\frac{1}{n}\)
The outline is given below for each problem
- For each \(n\) there is an \(\varepsilon_n>0\) so that \[\sqrt{4+\frac{1}{n}}=2+\varepsilon_n.\] Square both sides to get \[4+\frac{1}{n}=4+4\varepsilon_n+\varepsilon_n^2.\] Because \[4+4\varepsilon_n+\varepsilon_n^2\geq 4+4\varepsilon_n,\] then \[4+\frac{1}{n}\geq 4+4\varepsilon_n.\] Solve for \(\varepsilon_n\) to get \[\frac{1}{4n}\geq \varepsilon_n.\] Because \[0<\varepsilon_n\leq \frac{1}{4n}\] and \(a_n=0\) and \(c_n=\frac{1}{4n}\) are null sequences, the conclusion of the null sequence theorem is that \(\varepsilon_n\) is a null sequence. Hence \[\displaystyle\lim_{n\to\infty}\sqrt{4+\frac{1}{n}}=\lim_{n\to\infty}(2+\varepsilon_n)=2+0=2.\]
- For each \(n\) there is an \(\varepsilon_n>0\) so that \[\sqrt{25+\frac{1}{n}}=5+\varepsilon_n.\] Square both sides to get \[25+\frac{1}{n}=25+10\varepsilon_n+\varepsilon_n^2.\] Because \[25+10\varepsilon_n+\varepsilon_n^2\geq 25+10\varepsilon_n,\] then \[25+\frac{1}{n}\geq 25+10\varepsilon_n.\] Solve for \(\varepsilon_n\) to get \[\frac{1}{10n}\geq \varepsilon_n.\] Because \[0<\varepsilon_n\leq \frac{1}{10n}\] and \(a_n=0\) and \(c_n=\frac{1}{10n}\) are null sequences, the conclusion of the null sequence theorem is that \(\varepsilon_n\) is a null sequence. Hence \[\displaystyle\lim_{n\to\infty}\sqrt{25+\frac{1}{n}}=\lim_{n\to\infty}(5+\varepsilon_n)=5+0=5.\]
- For each \(n\) there is an \(\varepsilon_n>0\) so that \[\sqrt[3]{8+\frac{1}{n}}=2+\varepsilon_n.\] Cube both sides to get \[8+\frac{1}{n}=8+12\varepsilon_n+6\varepsilon_n^2+\varepsilon_n^3.\] Because \[8+12\varepsilon_n+6\varepsilon_n^2+\varepsilon_n^3\geq 8+12\varepsilon_n,\] then \[8+\frac{1}{n}\geq 8+12\varepsilon_n.\] Solve for \(\varepsilon_n\) to get \[\frac{1}{12n}\geq \varepsilon_n.\] Because \[0<\varepsilon_n\leq \frac{1}{12n}\] and \(a_n=0\) and \(c_n=\frac{1}{12n}\) are null sequences, the conclusion of the null sequence theorem is that \(\varepsilon_n\) is a null sequence. Hence \[\displaystyle\lim_{n\to\infty}\sqrt[3]{8+\frac{1}{n}}=\lim_{n\to\infty}(2+\varepsilon_n)=2+0=2.\]
- \(32\)
- \(\frac{14}{11}\)
- \(0\)
- \(15\)
- \(12\)
- \(5\)
- \(2\)
- \(-\tfrac{4}{5}\)
- \(\tfrac{1}{2}\)
- \(0\)
- \(\frac{1}{4}\)
- \(\frac{1}{10}\)
- \(3\)
\(-\frac{5}{99}\)
\(\lim\limits_{n\to\infty}f(a_n)=-1\) and \(\lim\limits_{n\to\infty}f(b_n)=63\)
The following are brief key points you need to show in your argument for each part. You will need to fill in the details in your responses.
- Show that for each positive real number \(\varepsilon\), there is a natural number \(N\) so that \(\tfrac{1}{\varepsilon}-2< N\). Show that this implies for all natural numbers \(n\) greater than or equal to \(N\), \(\frac{1}{3n+2}<\varepsilon\).
- Show that for each positive real number \(\varepsilon\), there is a natural number \(N\) so that \(\tfrac{4}{\varepsilon}< N\). Show that this implies for all natural numbers \(n\) greater than or equal to \(N\), \(\frac{4}{n^2+2n}<\varepsilon\).
- Show that for each positive real number \(\varepsilon\), there is a natural number \(N\) so that \(\tfrac{1}{8\varepsilon}-\frac{1}{4}< N\). Show that this implies for all natural numbers \(n\) greater than or equal to \(N\), \(\left|\frac{2n+1}{4n+1}-\tfrac{1}{2}\right|<\varepsilon\).
- Show that for each positive real number \(\varepsilon\), there is a natural number \(N\) so that \(\tfrac{1}{9\varepsilon}< N\). Show that this implies for all natural numbers \(n\) greater than or equal to \(N\), \(\left|\sqrt{81+\tfrac{1}{n^2}}-9\right|<\varepsilon\).
- \(\frac{\infty}{\infty}\) indeterminate form
- not indeterminate form
- not indeterminate form
- not indeterminate form
- \(\infty-\infty\) indeterminate form
- not indeterminate form
- \(0\cdot (-\infty)\) indeterminate form
- \(\frac{0}{0}\) indeterminate form