Dr. Bryan Carrillo’s The Principles of Calculus Website
  • Home
  • About
  • Course Schedule
    • Math 2 Spring 2025 In-Person Schedule
    • Math 3A Spring 2025 In-Person Schedule
  • Course Content
  • Demonstration Questions

On this page

  • Questions
  • Answers
  • Return

Chapter 5.2 Practice

Questions

  1. Show that each sequence is increasing:
    1. \(a_n=\tfrac{n}{n+2}\)
    2. \(a_n=\tfrac{3n-1}{2n+1}\)
  2. Show that each sequence is decreasing:
    1. \(a_n=\tfrac{n+3}{n+1}\)
    2. \(a_n=\tfrac{n+1}{5n+1}\)
  3. Find an example of a sequence \((a_n)\) with the following properties:
    1. \((a_n)\) is strictly increasing and converges to \(2.\)
    2. \((a_n)\) is strictly decreasing and converges to \(-4.\)
    3. \((a_n)\) is strictly decreasing and converges to \(1.\)
    4. \((a_n)\) is strictly increasing and converges to \(\frac{2}{3}.\)
  4. Calculate the following limits. Carefully justify your reasoning.
    1. \(\displaystyle\lim_{n\to\infty}\sqrt{4+\frac{1}{n}}\)
    2. \(\displaystyle\lim_{n\to\infty}\sqrt{25+\frac{1}{n}}\)
    3. \(\displaystyle\lim_{n\to\infty}\sqrt[3]{8+\frac{1}{n}}\)
  5. Take \((a_n)\), \((b_n)\), and \((c_n)\) to be sequences with \[ \lim_{n\to\infty}a_n = 1, \quad \lim_{n\to\infty}b_n = -1, \quad {\rm and} \quad \lim_{n\to\infty}c_n = 11.\] Use the limit laws to compute the following:
    1. \(\displaystyle \lim_{n\to\infty}(a_nb_n+3c_n)\)
    2. \(\displaystyle \lim_{n\to\infty}\left(b_n^2-\frac{b_n-2}{c_n}\right)\)
    3. \(\displaystyle \lim_{n\to\infty}\left(\tfrac{a_n+b_n}{c_n+(b_n)^2}\right)\)
  6. For each sequence \((a_n)\), use the limit laws to determine \(\displaystyle\lim_{n\to\infty}a_n\):
    1. \(a_n=5\left(3+\frac{7}{n}\right)\)
    2. \(a_n=12\)
    3. \(a_n=\left(\frac{1}{2}\right)^n+5\)
  7. Use the limit laws to determine the following limits:
    1. \(\displaystyle \lim_{n\to\infty}\tfrac{-4n+4}{5n+1}\)
    2. \(\displaystyle \lim_{n\to\infty}\tfrac{4n^3+5n^2+2n-1}{8n^3-n}\)
    3. \(\displaystyle \lim_{n\to\infty}\tfrac{n^3}{n^6-2n^2-3n-4}\)
  8. Calculate the following limits. Carefully justify your reasoning.
    1. \(\displaystyle\lim_{n\to \infty} n\left(\sqrt{4+\frac{1}{n}} - 2 \right)\)
    2. \(\displaystyle\lim_{n\to \infty} n\left(\sqrt{25+\frac{1}{n}} - 5 \right)\)
    3. \(\displaystyle\lim_{n\to\infty}\left(2^n+3^n\right)^\frac{1}{n}\)

Answers

    1. Show \(a_{n+1}-a_n>0\). Calculate \(a_{n+1}-a_{n}\). \(a_{n+1}-a_{n}=\frac{2}{(n+2)(n+3)}.\)
    2. Show \(a_{n+1}-a_n>0\). Calculate \(a_{n+1}-a_{n}\). \(a_{n+1}-a_{n}=\frac{5}{(2n+1)(2n+3)}.\)
    1. Show \(a_{n}-a_{n+1}>0\). Calculate \(a_{n}-a_{n+1}\). \(a_{n}-a_{n+1}=\frac{2}{(n+1)(n+2)}.\)
    2. Show \(a_{n}-a_{n+1}>0\). Calculate \(a_{n}-a_{n+1}\). \(a_{n}-a_{n+1}=\frac{4}{(5n+1)(5n+6)}.\)
  1. Answers may vary
    1. \(a_n=2-\frac{1}{n}\)
    2. \(a_n=-4+\frac{1}{n}\)
    3. \(a_n=1+\frac{1}{n}\)
  2. The outline is given below for each problem
    1. For each \(n\) there is an \(\varepsilon_n>0\) so that \[\sqrt{4+\frac{1}{n}}=2+\varepsilon_n.\] Square both sides to get \[4+\frac{1}{n}=4+4\varepsilon_n+\varepsilon_n^2.\] Because \[4+4\varepsilon_n+\varepsilon_n^2\geq 4+4\varepsilon_n,\] then \[4+\frac{1}{n}\geq 4+4\varepsilon_n.\] Solve for \(\varepsilon_n\) to get \[\frac{1}{4n}\geq \varepsilon_n.\] Because \[0<\varepsilon_n\leq \frac{1}{4n}\] and \(a_n=0\) and \(c_n=\frac{1}{4n}\) are null sequences, the conclusion of the null sequence theorem is that \(\varepsilon_n\) is a null sequence. Hence \[\displaystyle\lim_{n\to\infty}\sqrt{4+\frac{1}{n}}=\lim_{n\to\infty}(2+\varepsilon_n)=2+0=2.\]
    2. For each \(n\) there is an \(\varepsilon_n>0\) so that \[\sqrt{25+\frac{1}{n}}=5+\varepsilon_n.\] Square both sides to get \[25+\frac{1}{n}=25+10\varepsilon_n+\varepsilon_n^2.\] Because \[25+10\varepsilon_n+\varepsilon_n^2\geq 25+10\varepsilon_n,\] then \[25+\frac{1}{n}\geq 25+10\varepsilon_n.\] Solve for \(\varepsilon_n\) to get \[\frac{1}{10n}\geq \varepsilon_n.\] Because \[0<\varepsilon_n\leq \frac{1}{10n}\] and \(a_n=0\) and \(c_n=\frac{1}{10n}\) are null sequences, the conclusion of the null sequence theorem is that \(\varepsilon_n\) is a null sequence. Hence \[\displaystyle\lim_{n\to\infty}\sqrt{25+\frac{1}{n}}=\lim_{n\to\infty}(5+\varepsilon_n)=5+0=5.\]
    3. For each \(n\) there is an \(\varepsilon_n>0\) so that \[\sqrt[3]{8+\frac{1}{n}}=2+\varepsilon_n.\] Cube both sides to get \[8+\frac{1}{n}=8+12\varepsilon_n+6\varepsilon_n^2+\varepsilon_n^3.\] Because \[8+12\varepsilon_n+6\varepsilon_n^2+\varepsilon_n^3\geq 8+12\varepsilon_n,\] then \[8+\frac{1}{n}\geq 8+12\varepsilon_n.\] Solve for \(\varepsilon_n\) to get \[\frac{1}{12n}\geq \varepsilon_n.\] Because \[0<\varepsilon_n\leq \frac{1}{12n}\] and \(a_n=0\) and \(c_n=\frac{1}{12n}\) are null sequences, the conclusion of the null sequence theorem is that \(\varepsilon_n\) is a null sequence. Hence \[\displaystyle\lim_{n\to\infty}\sqrt[3]{8+\frac{1}{n}}=\lim_{n\to\infty}(2+\varepsilon_n)=2+0=2.\]
    1. \(32\)
    2. \(\frac{14}{11}\)
    3. \(0\)
    1. \(15\)
    2. \(12\)
    3. \(5\)
    1. \(-\tfrac{4}{5}\)
    2. \(\tfrac{1}{2}\)
    3. \(0\)
    1. \(\frac{1}{4}\)
    2. \(\frac{1}{10}\)
    3. \(3\)

Return

  • Return

© Copyright 2025 by the POC Writing Team: Bryan Carrillo, Yat Sun Poon, and David Weisbart. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the POC Writing Team.