Chapter 4.4 Practice
\[ \definecolor{ucrblue}{rgb}{0.0627,0.3843,0.6039} \definecolor{ucrgold}{rgb}{0.9686,0.6941,0.2824} \definecolor{ucrred}{rgb}{0.8941,0,0.1686} \definecolor{ucrgreen}{rgb}{0.4706,0.7451,0.1255} \definecolor{ucraccent}{rgb}{1.0000,0.9569,0.8392} \DeclareMathOperator*{\LO}{O} \DeclareMathOperator*{\Lo}{o} \DeclareMathOperator*{\Recip}{Recip} \DeclareMathOperator*{\abs}{abs} \DeclareMathOperator{\pow}{pow} \]
Questions
- For each ellipse \(E\) and point \(p\) on \(E\), determine the equation of the line that is tangent to \(E\) at \(p\).
- \(E\) given by the equation \(\frac{x^2}{4}+\frac{y^2}{9}=5\), \(p=\left(-4,3\right)\)
- \(E\) given by the equation \(\frac{(x+4)^2}{5}+\frac{(y-2)^2}{4}=9\), \(p=\left(1,6\right)\)
- For each root function \(f\), and point \(p\), determine the line \(L\) that is tangent to \(f\) at \(p\)
- \(f(x)=\sqrt[4]{x}\), \(p=(16,2)\)
- \(f(x)=\sqrt[3]{x}\), \(p=(64,4)\)
Answers
- \(y=3x+15\)
- \(y=-x+7\)
- \(y=\frac{1}{32}x+\frac{3}{2}\)
- \(y=\frac{1}{48}x+\frac{8}{3}.\)