Questions
- Graph the following function. Identify the domain, range, and asymptotes of each function.
- \(f(x)=-4^{x+2}+1\)
- \(f(x)=3^{x}-5\)
- \(f(x)=\left(\frac{1}{2}\right)^{3x}\)
- \(f(x)=2e^{x+3}-1\)
- Take \(f(x)=-4^{x+2}+1\), \(g(x)=3^{x}-5\), \(h(x)=\left(\frac{1}{2}\right)^{3x},\) and \(j(x)=2e^{x+3}-1.\) Solve the following inequalities.
- \(f(x)>1\)
- \(g(x)>-5\)
- \(h(x)\leq 0\)
- \(j(x)\geq -1\)
- Compute the following values.
- \(\log_2(4)\)
- \(\log_3(27)\)
- \(\log_4(16)\)
- \(\log_\frac{1}{3}(9)\)
- \(\log_\frac{1}{3}\left(\frac{1}{3}\right)\)
- \(\log_4(1)\)
- \(\log_\frac{1}{2}(4)\)
- \(\log_e\left(\frac{1}{e^2}\right)\)
- \(\ln\left(e^3\right)\)
- Graph the following function. Identify the domain, range, and asymptotes of each function.
- \(f(x)=\ln(-x+3)-1\)
- \(f(x)=3\log_2(x+1)-5\)
- \(f(x)=\log_\frac{1}{4}(-x-5)\)
- Solve the following equations.
- \(4^{x}-16=0\)
- \(3^{x}-11=0\)
- \(6^{x-1}-36^{x}=0\)
- \(e^{2x}-\frac{1}{e^{x-2}}=0\)
- \(\log_2(x)+\log_2(x-4)=0\)
- \(\ln(-x)-\ln(-x-1)=1\)
- Take \(a\) and \(b\) to be two real numbers so that \(\log_2(a)=15\) and \(\log_2(b)=-\frac{3}{2}.\) Compute the following.
- \(\log_2(ab)\)
- \(\log_2(16a^2b)\)
- \(\log_2(a^5b^3)\)
- \(\log_2(\frac{4a^3}{b^7})\)
- \(\log_2(\frac{a}{16b^2})\)
- A quantity \(A\) changes according to a linear model for change and \[\begin{cases}
A(0)=3\\
A(1)=13.
\end{cases}\] Identify a formula for \(A(t).\)
- A quantity \(A\) changes according to an exponential model for change and \[\begin{cases}
A(0)=11\\
A(1)=12.
\end{cases}\] Identify a formula for \(A(t).\)
- A quantity \(A\) changes according to a linear model for change and \[\begin{cases}
A(3)=4\\
A(19)=12.
\end{cases}\] Identify a formula for \(A(t).\)
- A quantity \(A\) changes according to an exponential model for change and \[\begin{cases}
A(1)=5\\
A(9)=11.
\end{cases}\] Identify a formula for \(A(t).\)
- At time \(2\) an experimenter has \(15\) grams of a radioactive substance. At time \(12,\) \(2\) grams remain.
- Determine the half-life of the substance.
- Determine the time that it takes for only a fraction of \(\frac{1}{5}\) of the original remains.
- Determine the decay rate of the substance.
- A mass of bacteria experiences exponential growth. At time \(4\) an experimenter has \(100\) grams of bacteria. At time \(12\), the mass has grown to a mass of \(200\).
- Determine the doubling time of the bacteria.
- Determine the time that it takes for the amount of the material to increase by a factor of \(3\).
- Determine the growth rate of the substance.
Answers
- Domain is \((-\infty,\infty)\), range is \((-\infty,-1)\) and horizontal asymptote is \(y=1\).
- Domain is \((-\infty,\infty)\), range is \((-5,\infty)\) and horizontal asymptote is \(y=-5\).
- Domain is \((-\infty,\infty)\), range is \((0,\infty)\) and horizontal asymptote is \(y=0\).
- Domain is \((-\infty,\infty)\), range is \((0,\infty)\) and horizontal asymptote is \(y=0\).
- No solution
- \((-\infty,\infty)\)
- No solution
- \((-\infty,\infty)\)
- \(2\)
- \(3\)
- \(2\)
- \(-2\)
- \(1\)
- \(0\)
- \(-2\)
- \(-2\)
- \(3\)
- Domain is \((-\infty,3)\), range is \((-\infty,\infty)\) and vertical asymptote is \(x=3\).
- Domain is \((-1,\infty)\), range is \((-\infty,\infty)\) and vertical asymptote is \(x=-1\).
- Domain is \((-\infty,-5)\), range is \((-\infty,\infty)\) and vertical asymptote is \(x=-5\).
- \(2\)
- \(\log_3(11)\)
- \(-1\)
- \(\frac{2}{3}\)
- \(2+\sqrt{5}\)
- \(-\frac{e}{e-1}\)
- \(\frac{27}{3}\)
- \(\frac{65}{2}\)
- \(\frac{141}{2}\)
- \(\frac{115}{2}\)
- \(14\)
- \(A(t)=10t+3\)
- \(A(t)=11\left(\frac{12}{11}\right)^t\)
- \(A(t)=8\frac{(t-3)}{16}+4\)
- \(A(t)=5\left(\frac{11}{5}\right)^{\frac{t-1}{8}}\)
- \(\frac{10\ln\left(\frac{1}{2}\right)}{\ln\left(\frac{2}{15}\right)}\)
- \(\frac{10\ln\left(\frac{1}{5}\right)}{\ln\left(\frac{2}{15}\right)}\)
- \(-\frac{1}{10}\ln\left(\frac{2}{15}\right)\)
- \(8\)
- \(\frac{8\ln\left(3\right)}{\ln\left(2\right)}\)
- \(\frac{1}{8}\ln(2)\)