Dr. Bryan Carrillo’s The Principles of Calculus Website
  • Home
  • About
  • Course Schedule
    • Math 2 Spring 2025 In-Person Schedule
    • Math 3A Spring 2025 In-Person Schedule
  • Course Content
  • Demonstration Questions

On this page

  • Questions
  • Answers
  • Return

Chapter 4.3 Practice

Questions

  1. Graph the following function. Identify the domain, range, and asymptotes of each function.
    1. \(f(x)=-4^{x+2}+1\)
    2. \(f(x)=3^{x}-5\)
    3. \(f(x)=\left(\frac{1}{2}\right)^{3x}\)
    4. \(f(x)=2e^{x+3}-1\)
  2. Take \(f(x)=-4^{x+2}+1\), \(g(x)=3^{x}-5\), \(h(x)=\left(\frac{1}{2}\right)^{3x},\) and \(j(x)=2e^{x+3}-1.\) Solve the following inequalities.
    1. \(f(x)>1\)
    2. \(g(x)>-5\)
    3. \(h(x)\leq 0\)
    4. \(j(x)\geq -1\)
  3. Compute the following values.
    1. \(\log_2(4)\)
    2. \(\log_3(27)\)
    3. \(\log_4(16)\)
    4. \(\log_\frac{1}{3}(9)\)
    5. \(\log_\frac{1}{3}\left(\frac{1}{3}\right)\)
    6. \(\log_4(1)\)
    7. \(\log_\frac{1}{2}(4)\)
    8. \(\log_e\left(\frac{1}{e^2}\right)\)
    9. \(\ln\left(e^3\right)\)
  4. Graph the following function. Identify the domain, range, and asymptotes of each function.
    1. \(f(x)=\ln(-x+3)-1\)
    2. \(f(x)=3\log_2(x+1)-5\)
    3. \(f(x)=\log_\frac{1}{4}(-x-5)\)
  5. Solve the following equations.
    1. \(4^{x}-16=0\)
    2. \(3^{x}-11=0\)
    3. \(6^{x-1}-36^{x}=0\)
    4. \(e^{2x}-\frac{1}{e^{x-2}}=0\)
    5. \(\log_2(x)+\log_2(x-4)=0\)
    6. \(\ln(-x)-\ln(-x-1)=1\)
  6. Take \(a\) and \(b\) to be two real numbers so that \(\log_2(a)=15\) and \(\log_2(b)=-\frac{3}{2}.\) Compute the following.
    1. \(\log_2(ab)\)
    2. \(\log_2(16a^2b)\)
    3. \(\log_2(a^5b^3)\)
    4. \(\log_2(\frac{4a^3}{b^7})\)
    5. \(\log_2(\frac{a}{16b^2})\)
  7. A quantity \(A\) changes according to a linear model for change and \[\begin{cases} A(0)=3\\ A(1)=13. \end{cases}\] Identify a formula for \(A(t).\)
  8. A quantity \(A\) changes according to an exponential model for change and \[\begin{cases} A(0)=11\\ A(1)=12. \end{cases}\] Identify a formula for \(A(t).\)
  9. A quantity \(A\) changes according to a linear model for change and \[\begin{cases} A(3)=4\\ A(19)=12. \end{cases}\] Identify a formula for \(A(t).\)
  10. A quantity \(A\) changes according to an exponential model for change and \[\begin{cases} A(1)=5\\ A(9)=11. \end{cases}\] Identify a formula for \(A(t).\)
  11. At time \(2\) an experimenter has \(15\) grams of a radioactive substance. At time \(12,\) \(2\) grams remain.
    1. Determine the half-life of the substance.
    2. Determine the time that it takes for only a fraction of \(\frac{1}{5}\) of the original remains.
    3. Determine the decay rate of the substance.
  12. A mass of bacteria experiences exponential growth. At time \(4\) an experimenter has \(100\) grams of bacteria. At time \(12\), the mass has grown to a mass of \(200\).
    1. Determine the doubling time of the bacteria.
    2. Determine the time that it takes for the amount of the material to increase by a factor of \(3\).
    3. Determine the growth rate of the substance.

Answers

    1. Domain is \((-\infty,\infty)\), range is \((-\infty,-1)\) and horizontal asymptote is \(y=1\).
    2. Domain is \((-\infty,\infty)\), range is \((-5,\infty)\) and horizontal asymptote is \(y=-5\).
    3. Domain is \((-\infty,\infty)\), range is \((0,\infty)\) and horizontal asymptote is \(y=0\).
    4. Domain is \((-\infty,\infty)\), range is \((0,\infty)\) and horizontal asymptote is \(y=0\).
    1. No solution
    2. \((-\infty,\infty)\)
    3. No solution
    4. \((-\infty,\infty)\)
    1. \(2\)
    2. \(3\)
    3. \(2\)
    4. \(-2\)
    5. \(1\)
    6. \(0\)
    7. \(-2\)
    8. \(-2\)
    9. \(3\)
    1. Domain is \((-\infty,3)\), range is \((-\infty,\infty)\) and vertical asymptote is \(x=3\).
    2. Domain is \((-1,\infty)\), range is \((-\infty,\infty)\) and vertical asymptote is \(x=-1\).
    3. Domain is \((-\infty,-5)\), range is \((-\infty,\infty)\) and vertical asymptote is \(x=-5\).
    1. \(2\)
    2. \(\log_3(11)\)
    3. \(-1\)
    4. \(\frac{2}{3}\)
    5. \(2+\sqrt{5}\)
    6. \(-\frac{e}{e-1}\)
    1. \(\frac{27}{3}\)
    2. \(\frac{65}{2}\)
    3. \(\frac{141}{2}\)
    4. \(\frac{115}{2}\)
    5. \(14\)
  1. \(A(t)=10t+3\)
  2. \(A(t)=11\left(\frac{12}{11}\right)^t\)
  3. \(A(t)=8\frac{(t-3)}{16}+4\)
  4. \(A(t)=5\left(\frac{11}{5}\right)^{\frac{t-1}{8}}\)
    1. \(\frac{10\ln\left(\frac{1}{2}\right)}{\ln\left(\frac{2}{15}\right)}\)
    2. \(\frac{10\ln\left(\frac{1}{5}\right)}{\ln\left(\frac{2}{15}\right)}\)
    3. \(-\frac{1}{10}\ln\left(\frac{2}{15}\right)\)
    1. \(8\)
    2. \(\frac{8\ln\left(3\right)}{\ln\left(2\right)}\)
    3. \(\frac{1}{8}\ln(2)\)

Return

  • Return

© Copyright 2025 by the POC Writing Team: Bryan Carrillo, Yat Sun Poon, and David Weisbart. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the POC Writing Team.