Questions
- For each circle \(C\) and point \(p\) on \(C\), determine the equation of the line that is tangent to \(C\) at \(p\).
- \(C\) given by the equation \(x^2+y^2=9\), \(p=\left(\frac{9}{5},\frac{12}{5}\right)\)
- \(C\) given by the equation \((x+2)^2+y^2=10\), \(p=\left(-1,3\right)\)
- \(C\) given by the equation \(x^2+(y-4)^2=5\), \(p=\left(1,6\right)\)
- \(C\) given by the equation \((x-2)^2+(y-\tfrac{1}{2})^2=82\), \(p=\left(-7,\tfrac{3}{2}\right)\)
- For each quadratic function \(f\), and point \(p\), identify a quadratic equation in \(m\) that determines the slope \(m\) of \(L\) so that it is tangent to \(f\) at \(p\).
- \(f(x)=5x^2-3x-4\), \(p=(-2,22)\)
- \(f(x)=-2x^2+x-4\), \(p=(-1,1)\)
- \(f(x)=5x^2+3x\), \(p=(1,8)\)
- For each quadratic function \(f\), and point \(p\), determine the line \(L\) that is tangent to \(f\) at \(p\).
- \(f(x)=5x^2-3x-4\), \(p=(-2,22)\)
- \(f(x)=-2x^2+x-4\), \(p=(-1,1)\)
- \(f(x)=5x^2+3x\), \(p=(1,8)\)
- For each polynomial function \(f\), and point \(p\), determine the line \(L\) that is tangent to \(f\) at \(p\).
- \(f(x)=x^3+5x^2+x+2\), \(p=(1,9)\)
- \(f(x)=3x^4-3x+1\), \(p=(1,1)\)
- \(f(x)=-x^4+2x^2-1\), \(p=(2,-9)\)
Answers
- \(y=-\frac{3}{4}x-\frac{15}{4}\) \(p=\left(\frac{9}{5},\frac{12}{5}\right)\)
- \(y=-\frac{1}{3}x+\frac{8}{3}\)
- \(y=-\frac{1}{2}x+\frac{13}{2}\)
- \(y=9x+\frac{129}{2}\)
- \(m^2-46m+529=0\)
- \(m^2+10m+25=0\)
- \(m^2+26m+169=0\)
- \(y=-23x-24\)
- \(y=5x-2\)
- \(y=13x-5\)
- \(y=14x-5\)
- \(y=9x-8\)
- \(y=-40x+55\)