Dr. Bryan Carrillo’s The Principles of Calculus Website
  • Home
  • About
  • Course Schedule
    • Math 2 Spring 2025 In-Person Schedule
    • Math 3A Spring 2025 In-Person Schedule
  • Course Content
  • Demonstration Questions

On this page

  • Questions
  • Answers
  • Return

Chapter 3.4 Practice

Questions

  1. For each circle \(C\) and point \(p\) on \(C\), determine the equation of the line that is tangent to \(C\) at \(p\).
    1. \(C\) given by the equation \(x^2+y^2=9\), \(p=\left(\frac{9}{5},\frac{12}{5}\right)\)
    2. \(C\) given by the equation \((x+2)^2+y^2=10\), \(p=\left(-1,3\right)\)
    3. \(C\) given by the equation \(x^2+(y-4)^2=5\), \(p=\left(1,6\right)\)
    4. \(C\) given by the equation \((x-2)^2+(y-\tfrac{1}{2})^2=82\), \(p=\left(-7,\tfrac{3}{2}\right)\)
  2. For each quadratic function \(f\), and point \(p\), identify a quadratic equation in \(m\) that determines the slope \(m\) of \(L\) so that it is tangent to \(f\) at \(p\).
    1. \(f(x)=5x^2-3x-4\), \(p=(-2,22)\)
    2. \(f(x)=-2x^2+x-4\), \(p=(-1,1)\)
    3. \(f(x)=5x^2+3x\), \(p=(1,8)\)
  3. For each quadratic function \(f\), and point \(p\), determine the line \(L\) that is tangent to \(f\) at \(p\).
    1. \(f(x)=5x^2-3x-4\), \(p=(-2,22)\)
    2. \(f(x)=-2x^2+x-4\), \(p=(-1,1)\)
    3. \(f(x)=5x^2+3x\), \(p=(1,8)\)
  4. For each polynomial function \(f\), and point \(p\), determine the line \(L\) that is tangent to \(f\) at \(p\).
    1. \(f(x)=x^3+5x^2+x+2\), \(p=(1,9)\)
    2. \(f(x)=3x^4-3x+1\), \(p=(1,1)\)
    3. \(f(x)=-x^4+2x^2-1\), \(p=(2,-9)\)

Answers

    1. \(y=-\frac{3}{4}x-\frac{15}{4}\) \(p=\left(\frac{9}{5},\frac{12}{5}\right)\)
    2. \(y=-\frac{1}{3}x+\frac{8}{3}\)
    3. \(y=-\frac{1}{2}x+\frac{13}{2}\)
    4. \(y=9x+\frac{129}{2}\)
    1. \(m^2-46m+529=0\)
    2. \(m^2+10m+25=0\)
    3. \(m^2+26m+169=0\)
    1. \(y=-23x-24\)
    2. \(y=5x-2\)
    3. \(y=13x-5\)
    1. \(y=14x-5\)
    2. \(y=9x-8\)
    3. \(y=-40x+55\)

Return

  • Return

© Copyright 2025 by the POC Writing Team: Bryan Carrillo, Yat Sun Poon, and David Weisbart. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the POC Writing Team.