Questions
- For each rational function \(f\), determine its zeros and poles. Also list the order of each zero and pole.
- \(f(x)=\frac{1}{x^2(x-4)}\)
- \(f(x)=\frac{3x-1}{x^2+x}\)
- \(f(x)=\frac{(x+4)(x-5)^3(x-9)^2}{5x^2(x^2-1)(x+5)^2}\)
- \(f(x)=\frac{5x+4}{x^2+6}\)
- \(f(x)=\frac{x^4+1}{x+1}\)
- For each rational function \(f\), determine asymptotic behavior. If it has any, state its horizontal asymptote.
- \(f(x)=\frac{1}{x^2(x-4)}\)
- \(f(x)=\frac{3x-1}{x^2+x}\)
- \(f(x)=\frac{(x+4)(x-5)^3(x-9)^2}{5x^2(x^2-1)(x+5)^2}\)
- \(f(x)=\frac{5x+4}{x^2+6}\)
- \(f(x)=\frac{x^4+1}{x+1}\)
- For each polynomial function \(p\), take \(q\) to be the rational function \[q(x)=\frac{1}{p(x)}.\] Use \(y\)-axis inversion and a sketch of \(p\) to sketch \(q\).
- \(p(x)=x^2(x-4)\)
- \(p(x)=-5(x+3)(x+1)(x-5)^2\)
- \(p(x)=-3x(x+3)(x+1)^2(x-3)\)
Answers
- no zeros, poles at \(x=0\) and \(x=4\) with respective orders of \(2\) and \(1\)
- zero at \(x=\frac{1}{3}\) with order \(1\), poles at \(x=-1\) and \(x=0\) with respective orders of \(1\) and \(1\)
- zeros at \(x=-4\), \(x=5\) and \(x=9\) with respective orders of \(1\),\(3\), and \(2\), poles at \(x=-5\), \(x=-1\), \(x=0\), \(x=1\) with respective orders of \(2\),\(1\),\(2\) and \(1\)
- zero at \(x=-\frac{4}{5}\) with order \(1\), no pole
- no zeros, pole at \(x=-1\) with order \(1\)
- \(\frac{1}{x^3}\), horizontal asymptote at \(y=0\)
- \(\frac{3}{x}\), horizontal asymptote at \(y=0\)
- \(\frac{1}{5}\), horizontal asymptote \(y=\frac{1}{5}\)
- \(\frac{5}{x}\), horizontal asymptote at \(y=0\)
- \(x^3\), no horizontal asymptote