Dr. Bryan Carrillo’s The Principles of Calculus Website
  • Home
  • About
  • Course Schedule
    • Math 2 Spring 2025 In-Person Schedule
    • Math 3A Spring 2025 In-Person Schedule
  • Course Content
  • Demonstration Questions

On this page

  • Questions
    • Question 1
    • Question 2
    • Question 3
    • Question 4
  • Answers
    • Question 1
    • Question 2
    • Question 3
    • Question 4
  • Return

Chapter 2.5 Practice

Questions

Question 1

  1. For each function \(f,\) determine whether it is invertible. If it is, identify its inverse.
    1. \(f=\{(1,1),(5,1),(6,2)\}\)
    2. \(f=\left\{\left(-\tfrac{1}{2},3\right),(-2,0),\left(2,\tfrac{3}{2}\right),\left(1,\tfrac{4}{3}\right)\right\}\)
    3. \(f=\left\{\left(\tfrac{5}{2},-\frac{4}{5}\right),(-1,1),\left(0,\tfrac{5}{2}\right)\right\}\)

Question 2

  1. For each invertible function \(f\), determine the domain and range of \(f^{-1}\)

    1. the function \(f\) with \(\mathcal{D}(f)=(-\infty,\infty)\) and \(\mathcal{R}(f)=[3,\infty)\)
    2. the function \(f\) with \(\mathcal{D}(f)=(-\infty,5]\cup[6,\infty)\) and \(\mathcal{R}(f)=(-\infty,\infty)\)
    3. the function \(f\) with \(\mathcal{D}(f)=(2,7]\) and \(\mathcal{R}(f)=(-\infty,0]\cup(1,\infty)\)
    4. the function \(f\) whose graph is given below:

Question 3

  1. Sketch each invertible function \(f\) and its inverse. Write a formula for its inverse.

    1. the function \(f|_A\) where \(f(x)=x^2\) and \(A=(-4,-3)\cup[0,3]\cup[4,5]\)
    2. the function \(f|_A\) where \(f(x)=x^2\) and \(A=(-6,-2)\cup[-1,0)\cup(1,2]\cup[6,7]\)
    3. the function \(f|_A\) where \(f(x)=(x-1)^2\) and \(A=(-3,-1]\cup[1,3)\)
    4. the function \(f\) whose graph is given below:

Question 4

  1. For each invertible function \(f\), determine \(f^{-1}\) as well as the domains and ranges of \(f\) and \(f^{-1}\)
    1. \(f(x)=3x+1\)
    2. \(f(x)=-\frac{2}{3}x-5\)
    3. \(f(x)=x^3+8\)
    4. \(f(x)=\frac{1}{2}(x-1)^3-2\)
    5. \(f(x)=\frac{3x}{10x+15}\)
    6. \(f(x)=\frac{6x-1}{4x+1}\)

Answers

Question 1

    1. Not invertible
    2. Invertible, \(f^{-1}=\left\{\left(3,-\tfrac{1}{2}\right),(0,-2),\left(\tfrac{3}{2},2\right),\left(\tfrac{4}{3},2\right)\right\}\)
    3. Invertible, \(f=\left\{\left(-\frac{4}{5},\tfrac{5}{2}\right),(1,-1),\left(\tfrac{5}{2},0\right)\right\}\)

Question 2

    1. \(\mathcal{D}(f^{-1})=[3,\infty)\), \(\mathcal{R}(f^{-1})=(-\infty,\infty)\)
    2. \(\mathcal{D}(f^{-1})=(-\infty,\infty)\), \(\mathcal{R}(f^{-1})=(-\infty,5]\cup[6,\infty)\)
    3. \(\mathcal{D}(f^{-1})=(-\infty,0]\cup(1,\infty)\), \(\mathcal{R}(f)=(2,7]\)
    4. \(\mathcal{D}(f^{-1})=[-4,0]\cup(4,8]\), \(\mathcal{R}(f^{-1})=[-3,-1)\cup[0,1]\)

Question 3

    1. The sketch of \(f|_A\) and its inverse is given below, while the formula is \[f^{-1}(x)=\begin{cases}\sqrt{x}&\text{if } 0\leq x\leq 9\\-\sqrt{x}&\text{if }9<x<16\\\sqrt{x}&\text{if }16\leq x\leq 25\end{cases}\]

  1. the function \(f|_A\) where \(f(x)=x^2\) and \(A=(-6,-2)\cup[-1,0)\cup(1,2]\cup[6,7]\) The sketch of \(f|_A\) and its inverse is given below, while the formula is \[f^{-1}(x)=\begin{cases}-\sqrt{x}&\text{if } 0< x\leq 1\\\sqrt{x}&\text{if }1<x\leq 4\\-\sqrt{x}&\text{if }4< x< 36\\\sqrt{x}&\text{if }36\leq x\leq 49\end{cases}\]

  1. The sketch of \(f|_A\) and its inverse is given below, while the formula is \[f^{-1}(x)=\begin{cases}\sqrt{x}+1&\text{if } 0\leq x< 4\\-\sqrt{x}+1&\text{if }4\leq x<16\end{cases}\]

  1. The sketch of \(f\) is already given. However, it may be helpful to write a formula for \(f\) to find its inverse: \[f(x)=\begin{cases}-2x+2&\text{if }-3\leq x<1\\4x-4&\text{if }0\leq 1\end{cases}.\] The sketch of its inverse is given below, while the formula is \[f^{-1}(x)=\begin{cases}-\frac{1}{2}(x-4)-1&\text{if } 4< x\leq 8\\\frac{1}{4}x+1&\text{if }-4\leq x<0\end{cases}\]

Question 4

    1. \(f^{-1}(x)=\frac{1}{3}x-\frac{1}{3}\);
      \(\mathcal{D}(f)=(-\infty,\infty),\quad \mathcal{R}(f)=(-\infty,\infty)\)
      \(\mathcal{D}(f^{-1})=(-\infty,\infty)\quad \mathcal{R}(f^{-1})=(-\infty,\infty)\)
    2. \(f^{-1}(x)=-\frac{3}{2}x-\frac{15}{2}\);
      \(\mathcal{D}(f)=(-\infty,\infty),\quad \mathcal{R}(f)=(-\infty,\infty)\),
      \(\mathcal{D}(f^{-1})=(-\infty,\infty)\), \(\mathcal{R}(f^{-1})=(-\infty,\infty)\)
    3. \(f^{-1}(x)=\sqrt[3]{x-8}\);
      \(\mathcal{D}(f)=(-\infty,\infty), \quad \mathcal{R}(f)=(-\infty,\infty)\),
      \(\mathcal{D}(f^{-1})=(-\infty,\infty),\quad \mathcal{R}(f^{-1})=(-\infty,\infty)\)
    4. \(f^{-1}(x)=\sqrt[3]{2x+4}+1\);
      \(\mathcal{D}(f)=(-\infty,\infty),\quad \mathcal{R}(f)=(-\infty,\infty)\),
      \(\mathcal{D}(f^{-1})=(-\infty,\infty),\quad \mathcal{R}(f^{-1})=(-\infty,\infty)\)
    5. \(f^{-1}(x)=-\frac{15x}{10x-3}\);
      \(\mathcal{D}(f)=\left(-\infty,-\frac{3}{2}\right)\cup\left(-\frac{3}{2},\infty\right),\quad \mathcal{R}(f)=\left(-\infty,\frac{3}{10}\right)\cup\left(\frac{3}{10},\infty\right)\)
      \(\mathcal{D}(f^{-1})=\left(-\infty,\frac{3}{10}\right)\cup\left(\frac{3}{10},\infty\right),\quad \mathcal{R}(f^{-1})=\left(-\infty,-\frac{3}{2}\right)\cup\left(-\frac{3}{2},\infty\right)\)
    6. \(f^{-1}(x)=\frac{x+1}{-4x+6}\);
      \(\mathcal{D}(f)=\left(-\infty,-\frac{1}{4}\right)\cup\left(-\frac{1}{4},\infty\right),\quad\mathcal{R}(f)=\left(-\infty,\frac{3}{2}\right)\cup\left(\frac{3}{2},\infty\right)\),
      \(\mathcal{D}(f^{-1})=\left(-\infty,\frac{3}{2}\right)\cup\left(\frac{3}{2},\infty\right),\quad \mathcal{R}(f^{-1})=\left(-\infty,-\frac{1}{4}\right)\cup\left(-\frac{1}{4},\infty\right)\)

Return

  • Return

© Copyright 2025 by the POC Writing Team: Bryan Carrillo, Yat Sun Poon, and David Weisbart. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the POC Writing Team.