Dr. Bryan Carrillo’s The Principles of Calculus Website
  • Home
  • About
  • Course Schedule
    • Math 2 Spring 2025 In-Person Schedule
    • Math 3A Spring 2025 In-Person Schedule
  • Course Content
  • Demonstration Questions

On this page

  • Questions
    • Question 1
    • Question 2
    • Question 3
    • Question 4
    • Question 5
    • Question 6
    • Question 7
    • Question 8
    • Question 9
  • Answers
    • Question 1
    • Question 2
    • Question 3
    • Question 4
    • Question 5
    • Question 6
    • Question 7
    • Question 8
    • Question 9
  • Return

Chapter 2.2 Practice

Questions

Question 1

  1. Determine the coordinates of the following vectors.
    1. \(4V\) where \(V=\langle -1,2\rangle\)
    2. \(-V\) where \(V=\langle 4,6\rangle\)
    3. \(2V\) where \(V=\langle -3,5\rangle\)
    4. \(-7V\) where \(V=\langle -2,-1\rangle\)

Question 2

  1. Calculate the length of the following vectors.
    1. \(V=\langle -1,2\rangle\) and \(4V\)
    2. \(V=\langle 4,6\rangle\) and \(-V\)
    3. \(V=\langle -3,5\rangle\) and \(2V\)
    4. \(V=\langle -2,-1\rangle\) and \(-7V\)

Question 3

  1. Write the polar form of the following vectors.
    1. \(V=\langle -1,2\rangle\)
    2. \(V=\langle 4,6\rangle\)
    3. \(V=\langle -3,5\rangle\)
    4. \(V=\langle -2,-1\rangle\)

Question 4

  1. Determine an equation for the circle with following radius and center.
    1. \((5,1)\) and \(r=2\).
    2. \((-3,2)\) and \(r=9\).
    3. \((2,4)\) and \(r=3\).
    4. \((-1,-8)\) and \(r=\sqrt{5}\).
    5. \((3,0)\) and \(r=1\).

Question 5

  1. Identify the center and radius of the following circles whose equation is given below:
    1. \(x^2 - 2 x + y^2 + 8 y + 13 = 0\)
    2. \(x^2 + 6 x + y^2 + 10 y + 34 = 2\)
    3. \(x^2 + y^2 - 2 y - 15 = 0\)
    4. \(x^2 + 14 x + y^2 + 24 = 0\)

Question 6

  1. Determine all points at which the line given by the following equation intersects the unit circle:
    1. \(y=8x\)
    2. \(y=-3x\)
    3. \(y=4x\)
    4. \(y=-5x\)

Question 7

  1. Take \(C\) to be the circle with radius \(2\) and center \((-1,2).\) Take \(L\) to be the line that intersects \((-1,2)\) and \((3,4).\) Determine all points at which \(L\) intersects \(C\).

Question 8

  1. Identify the projection of the given point \(p\) onto the unit circle.
    1. \((4,6)\)
    2. \((-1,-3)\)
    3. \((-5,-2)\)
    4. \((0,8)\)

Question 9

  1. For each function \(f\), write its transformed function \(g\) as a composite function using the functions \(T_h\) and \(S_a\) given by \[T_h(x)=x+h\quad\text{and}\quad S_a(x)=ax.\]
    1. \(f(x)=x^2\), \(g(x)=3(x+2)^2+1\)
    2. \(f(x)=x^3\), \(g(x)=-(3x-2)^3-2\)
    3. \(f(x)=|x|\), \(g(x)=2|5x|+1\)
    4. \(f(x)=\frac{1}{x}\), \(g(x)=\frac{2}{5x-1}+3.\)

Answers

Question 1

    1. \(\langle -4,8\rangle\)
    2. \(\langle -4,-6\rangle\)
    3. \(\langle -6,10\rangle\)
    4. \(\langle 14,7\rangle\)

Question 2

    1. \(\|V\|=\sqrt{5}\) and \(\|4V\|=\sqrt{80}\)
    2. \(\|V\|=\sqrt{52}\) and \(\|-V\|=\sqrt{52}\)
    3. \(\|V\|=\sqrt{34}\) and \(\|2V\|=\sqrt{136}\)
    4. \(\|V\|=\sqrt{5}\) and \(\|-7V\|=\sqrt{245}\)

Question 3

    1. \(\sqrt{5}\left\langle \frac{-1}{\sqrt{5}},\frac{2}{\sqrt{5}}\right\rangle\)
    2. \(\sqrt{52}\left\langle \frac{4}{\sqrt{52}},\frac{6}{\sqrt{52}}\right\rangle\)
    3. \(\sqrt{34}\left\langle \frac{-3}{\sqrt{34}},\frac{5}{\sqrt{34}}\right\rangle\)
    4. \(\sqrt{5}\left\langle \frac{-2}{\sqrt{5}},\frac{-1}{\sqrt{5}}\right\rangle\)

Question 4

    1. \((x-5)^2+(y-1)^2=4\)
    2. \((x+3)^2+(y-2)^2=81\)
    3. \((x-2)^2+(y-4)^2=9\)
    4. \((x+1)^2+(y+8)^2=5\)
    5. \((x-3)^2+y^2=1\)

Question 5

    1. center at \((1,-4)\), radius \(2\)
    2. center at \((-3,-5)\), radius \(\sqrt{2}\)
    3. center at \((0,1)\), radius \(4\)
    4. center at \((-7,0)\), radius \(5\)

Question 6

    1. \(\left(\frac{1}{\sqrt{65}},\frac{8}{\sqrt{65}}\right)\), \(\left(-\frac{1}{\sqrt{65}},-\frac{8}{\sqrt{65}}\right)\)
    2. \(\left(\frac{1}{\sqrt{10}},-\frac{3}{\sqrt{10}}\right)\), \(\left(-\frac{1}{\sqrt{10}},\frac{3}{\sqrt{10}}\right)\)
    3. \(\left(\frac{1}{\sqrt{17}},\frac{4}{\sqrt{17}}\right)\), \(\left(-\frac{1}{\sqrt{17}},-\frac{4}{\sqrt{17}}\right)\)
    4. \(\left(\frac{1}{\sqrt{26}},-\frac{5}{\sqrt{26}}\right)\), \(\left(-\frac{1}{\sqrt{26}},\frac{5}{\sqrt{26}}\right)\)

Question 7

  1. \(\left(\frac{4}{\sqrt{5}}-1,\frac{2}{\sqrt{5}}+2\right)\), \(\left(-\frac{4}{\sqrt{5}}-1,-\frac{2}{\sqrt{5}}+2\right)\)

Question 8

    1. \(\left(\frac{4}{\sqrt{52}},\frac{6}{\sqrt{52}}\right)\), \(\left(-\frac{4}{\sqrt{52}},-\frac{6}{\sqrt{52}}\right)\)
    2. \(\left(-\frac{1}{\sqrt{10}},-\frac{3}{\sqrt{10}}\right)\), \(\left(\frac{1}{\sqrt{10}},\frac{3}{\sqrt{10}}\right)\)
    3. \(\left(-\frac{5}{\sqrt{29}},-\frac{2}{\sqrt{29}}\right)\), \(\left(\frac{5}{\sqrt{29}},\frac{2}{\sqrt{29}}\right)\)
    4. \(\left(0,1\right)\), \(\left(0,-1\right)\)

Question 9

    1. \(T_1\circ S_3\circ f\circ T_2\)
    2. \(T_{-2}\circ S_{-1} \circ f \circ S_3 \circ T_{-\frac{2}{3}}\)
    3. \(T_1\circ S_2\circ f\circ S_5\)
    4. \(T_3\circ S_2\circ f\circ S_5\circ T_{-1}\)

Return

  • Return

© Copyright 2025 by the POC Writing Team: Bryan Carrillo, Yat Sun Poon, and David Weisbart. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the POC Writing Team.