Dr. Bryan Carrillo’s The Principles of Calculus Website
  • Home
  • About
  • Course Schedule
    • Math 2 Spring 2025 In-Person Schedule
    • Math 3A Spring 2025 In-Person Schedule
  • Course Content
  • Demonstration Questions

On this page

  • Questions
    • Question 1
    • Question 2
    • Question 3
    • Question 4
    • Question 5
  • Answers
    • Question 1
    • Question 2
    • Question 3
    • Question 4
    • Question 5
  • Return

Chapter 1.6 Practice

Questions

Question 1

  1. For each function \(f\), determine the domain and range of \(f.\) It may be helpful to sketch the function.
    1. \(f(x)=\begin{cases}-x+2&\text{if }-2\leq x\leq 2\\x&\text{if }3\leq x\end{cases}\)
    2. \(f(x)=\begin{cases}4x-2&\text{if }-4\leq x< 0\\x^2&\text{if }0\leq x<6\end{cases}\)
    3. \(f(x)=\begin{cases}4&\text{if }x\leq 0\\x+5&\text{if }0<x\end{cases}\)

Question 2

  1. For each function \(f\) and \(g\), determine \(\mathcal{D}(f+g)\) and \(\mathcal{D}(fg)\) and find a formula for \(f+g\) and \(fg.\)
    1. \(f(x)=x-1\quad\text{and}\quad g(x)=\begin{cases}x&\text{if } -3<x<8\\ 4&\text{if }8\leq x \end{cases}\)
    2. \(f(x)=\begin{cases}2&\text{if }-4\leq x\leq 2\\ x &\text{if }2< x< 8\end{cases}\quad\text{and}\quad g(x)=\begin{cases}x&\text{if } -3<x<8\\ 4&\text{if }8\leq x \end{cases}\)
    3. \(f(x)=\begin{cases}x^2&\text{if }x\leq -3\\ -3x &\text{if }-3<x<1\\2x-4&\text{if }1\leq x\end{cases}\quad\text{and}\quad g(x)=\begin{cases}x+1&\text{if } -5<x<1\\ x&\text{if }1\leq x<4\\ 4&\text{if }4\leq x \end{cases}\)

Question 3

  1. For each function \(f\) and \(g\), determine \(\mathcal{D}\left(\tfrac{f}{g}\right)\) and find a formula for \(\tfrac{f}{g}.\)
    1. \(f(x)=\begin{cases}5x-2&\text{if }-7<x<-3\\ x&\text{if }-1<x\end{cases}\quad\text{and}\quad g(x)=\begin{cases}x&\text{if } -4<x<2\\ 4&\text{if }3\leq x \leq 4\\x-4&\text{if }5\leq x\end{cases}\)
    2. \(f(x)=\begin{cases}x&\text{if }x\leq-8\\ 5x&\text{if }-7\leq x<-6\\-x&\text{if }-5\leq x\leq 10\end{cases}\quad\text{and}\quad g(x)=\begin{cases}x+3&\text{if } -7.5<x<-4\\ -x+2&\text{if }-2\leq x \leq 12\end{cases}\)

Question 4

  1. Solve the following inequalities:
    1. \(1<f(x)\leq 2\) where \[ f(x)=\begin{cases}3x-1&\text{if }-2<x<3\\ x-9&\text{if }4\leq x\end{cases}\]
    2. \(f(x)>-\tfrac{3}{2}x+2\) where \[ f(x)=\begin{cases}-2x&\text{if }-9<x<-2\\ x-4&\text{if }2\leq x\leq 5\end{cases}\]
    3. \(f(x)>g(x)\) where \[ f(x)=\begin{cases}-2x&\text{if }-4<x<-2\\ 3x+1&\text{if }-2\leq x\leq 5\end{cases}\quad \text{ and }\quad g(x)=\begin{cases}-x+3&\text{if }x<-1\\ x+9&\text{if }0\leq x\end{cases}\]

Question 5

  1. Solve the following inequalities:
    1. \(|x-3|>4x-3\)
    2. \(|2x+1|>|-x-6|\)
    3. \(|-x+8|\geq|4x-6|\)

Answers

Question 1

    1. \(\mathcal{D}(f)=[-2,2]\cup[3,\infty)\), \(\mathcal{R}(f)=[0,\infty).\)
    2. \(\mathcal{D}(f)=[-4,6)\), \(\mathcal{R}(f)=[-18,-2)\cup[0,36].\)
    3. \(\mathcal{D}(f)=(-\infty,\infty)\), \(\mathcal{R}(f)=\{4\}\cup (5,\infty)\) or \(\mathcal{R}(f)=[4,4]\cup (5,\infty)\)

Question 2

    1. \(\mathcal{D}(f+g)=\mathcal{D}(fg)=(-3,\infty)\) \[(f+g)(x)=\begin{cases}2x-1&\text{if }-3<x<8\\x+3&\text{if }8\leq x\end{cases}\quad\text{and}\quad (fg)(x)=\begin{cases}x^2-x&\text{if }-3<x<8\\4x-4&\text{if }8\leq x\end{cases}\]
    2. \(\mathcal{D}(f+g)=\mathcal{D}(fg)=(-3,8)\) \[(f+g)(x)=\begin{cases}x+2&\text{if }-3<x\leq 2\\2x&\text{if }2<x<8\end{cases}\quad\text{and}\quad (fg)(x)=\begin{cases}2x&\text{if }-3<x\leq 2\\x^2&\text{if }2<x<8\end{cases}\]
    3. \(\mathcal{D}(f+g)=\mathcal{D}(fg)=(-5,\infty)\) \((f+g)(x)=\begin{cases}x^2+x+1&\text{if }-5<x\leq -3\\ -2x+1&\text{if }-3<x<1\\3x-4&\text{if }1\leq x<4\\ 2x&\text{if }4\leq x\end{cases}\quad\text{and}\quad (fg)(x)=\begin{cases}x^3+x&\text{if }-5<x\leq -3\\ -3x^2-3x&\text{if }-3<x<1\\2x^2-4x&\text{if }1\leq x<4\\ 8x-16&\text{if }4\leq x\end{cases}\)

Question 3

    1. \(\mathcal{D}\left(\frac{f}{g}\right)=(-4,-3)\cup(-1,0)\cup(0,2)\cup[3,4]\cup[5,\infty)\) \[\left(\frac{f}{g}\right)(x)=\begin{cases}\frac{5x-2}{x}&\text{if }-4<x<-3\\ 1 &\text{if }-1<x<0\\ 1 &\text{if }0<x<2\\\frac{x}{4}&\text{if }3\leq x\leq 4\\\frac{x}{x-4}&\text{if }5\leq x\end{cases}\]
    2. \(\mathcal{D}\left(\frac{f}{g}\right)=[-7,-6]\cup[-5,-4)\cup[-2,2)\cup(2,10]\) \[\left(\frac{f}{g}\right)(x)=\begin{cases}\frac{5x}{x+3}&\text{if }-7\leq x\leq-6\\ -\frac{x}{x+3}&\text{if }-5\leq x\leq-4\\\frac{x}{x-2}&\text{if }-2\leq x< 2\\ \frac{x}{x-2}&\text{if }2< x\leq 10\end{cases}\]

Question 4

    1. \((\frac{2}{3},1]\cup(10,11]\)
    2. \((-9-4)\cup(\tfrac{12}{5},5]\)
    3. \((-4,-3)\cup(4,5]\)

Question 5

    1. \((-\infty,\tfrac{6}{5})\)
    2. \((-\infty,-\tfrac{7}{3})\cup(5,\infty)\)
    3. \([-\tfrac{2}{3},\tfrac{14}{5}]\)

Return

  • Return

© Copyright 2025 by the POC Writing Team: Bryan Carrillo, Yat Sun Poon, and David Weisbart. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the POC Writing Team.