Dr. Bryan Carrillo’s The Principles of Calculus Website
  • Home
  • About
  • Course Schedule
    • Math 2 Spring 2025 In-Person Schedule
    • Math 3A Spring 2025 In-Person Schedule
  • Course Content
  • Demonstration Questions

On this page

  • Questions
    • Question 1
    • Question 2
    • Question 3
    • Question 4
    • Question 5
    • Question 6
  • Answers
    • Question 1
    • Question 2
    • Question 3
    • Question 4
    • Question 5
    • Question 6
  • Return

Chapter 1.5 Practice

Questions

Question 1

  1. For each function \(f\) and domain \(D\), sketch \(f\) on its restriction to \(D\).
    1. \(f(x)=4x+1\), \(D=[-3,1)\)
    2. \(f(x)=-2x+1\), \(D=(-\infty,3)\)
    3. \(f(x)=x^2\), \(D=[-2,-1]\cup [0,1)\cup(2,4)\)
    4. \(f(x)=\sqrt{x}\), \(D=[1,4]\cup [9,16]\)
    5. \(f(x)=x^3\), \(D=(-2,0)\cup [1,3]\)
    6. \(f(x)=1\), \(D=[-3,-1]\cup (0,1]\cup [3,\infty)\)

Question 2

  1. For each function \(f\) and \(g\), compute \(f+g, f\cdot g, f-g,\frac{f}{g}, f\circ g\), and \(g\circ f\).
    1. \(f(x)=x-1\), \(g(x)=\sqrt{x}\)
    2. \(f(x)=3x\), \(g(x)=x^2\)
    3. \(f(x)=x^2+x-1\), \(g(x)=\frac{1}{x}\)
    4. \(f(x)=\frac{x-1}{x+2}\) or \(g(x)=\sqrt{x-1}\)

Question 3

  1. For each function \(f\) and \(g\), determine the domain of \(f+g, f\cdot g, f-g,\frac{f}{g},\frac{g}{f}\)
    1. functions \(f\) and \(g\) with \(\mathcal{D}(f)=[-3,10)\), \(\mathcal{D}(g)=[-2,14)\), zero set of \(f\) is \(\{-2,2,4\}\) and zero set of \(g\) is \(\{1,11\}\).
    2. functions \(f\) and \(g\) with \(\mathcal{D}(f)=(-\infty,0]\cup[1,5)\), \(\mathcal{D}(g)=[-1,\infty)\), zero set of \(f\) is \(\{1\}\) and zero set of \(g\) is \(\{10\}\).
    3. functions \(f\) and \(g\) with \(\mathcal{D}(f)=(-\infty,\infty)\), \(\mathcal{D}(g)=[-10,10)\), zero set of \(f\) is \(\{-1,[0,1],2\}\) and zero set of \(g\) is \(\{-5,5\}.\)

Question 4

  1. Take \[a(x)=x,\quad b(x)=x^2,\quad c(x)=1,\quad d(x)=\sqrt{x},\quad e(x)=\frac{1}{x},\quad\text{and}\quad f(x)=2x.\] Compute each of the function \(g.\)
    1. \(g=a+b+\frac{c+d}{a}\)
    2. \(g=e\circ d+b\cdot f+b\circ f+f\circ b\)
    3. \(g=d\circ (e+c)+a-e\)
    4. \(g=e\circ e\circ f\)
    5. \(g=e\circ(b+a+c)+d\circ (b+a+c)\)

Question 5

  1. Take \[a(x)=x,\quad b(x)=x^2,\quad c(x)=1,\quad d(x)=\sqrt{x},\quad e(x)=\frac{1}{x},\quad\text{and}\quad f(x)=2x.\] Decompose \(g\) into sums, products, and composites of the functions \(a,b,c,d,e\) and \(f\).
    1. \(g(x)=x+\sqrt{x}\)
    2. \(g(x)=x^2\sqrt{x-1}\)
    3. \(g(x)=\frac{x+1}{\sqrt{2x}}\)
    4. \(g(x)=\frac{x^2-2}{2x}+2x^2+x\sqrt{x}\)

Question 6

  1. For each function \(f\), determine the range of \(f\).
    1. \(f(x)=\frac{2}{x-1}\)
    2. \(f(x)=\frac{2x+4}{x-1}\)
    3. \(f(x)=\sqrt{x}+1\)

Answers

Question 1

Question 2

    1. \[(f+g)(x)=x-1+\sqrt{x}\] \[(f\cdot g)(x)=(x-1)\cdot\sqrt{x}=x\sqrt{x}-\sqrt{x}\] \[(f-g)(x)=x-1-\sqrt{x}\] \[\left(\frac{f}{g}\right)(x)=\frac{x-1}{\sqrt{x}}\] \[\left(f\circ g\right)(x)=\sqrt{x}-1\] \[\left(g\circ f\right)(x)=\sqrt{x-1}\]
    2. \[(f+g)(x)=3x+x^2\] \[(f\cdot g)(x)=3x^3\] \[(f-g)(x)=3x-x^2\] \[\left(\frac{f}{g}\right)(x)=\frac{3x}{x^2}=\text{ or }\frac{3}{x}\] \[\left(f\circ g\right)(x)=3x^2\] \[\left(g\circ f\right)(x)=9x^2\]
    3. \[(f+g)(x)=x^2+x-1+\frac{1}{x}\] \[(f\cdot g)(x)=(x^2+x-1)\frac{1}{x}\text{ or }x+1-\frac{1}{x}\] \[(f-g)(x)=x^2+x-1-\frac{1}{x}\] \[\left(\frac{f}{g}\right)(x)=\frac{x^2+x-1}{\frac{1}{x}}\text{ or }x^3+x^2-x\] \[\left(f\circ g\right)(x)=\frac{1}{x^2}+\frac{1}{x}-1\] \[\left(g\circ f\right)(x)=\frac{1}{x^2+x-1}\]
    4. \[(f+g)(x)=\frac{x-1}{x+2}+\sqrt{x-1}\] \[(f\cdot g)(x)=\frac{x-1}{x+2}\cdot \sqrt{x-1}\] \[(f-g)(x)=\frac{x-1}{x+2}-\sqrt{x-1}\] \[\left(\frac{f}{g}\right)(x)=\frac{\frac{x-1}{x+2}}{\sqrt{x-1}}\text{ or }\frac{x-1}{(x+2)\sqrt{x-1}}\] \[\left(f\circ g\right)(x)=\frac{\sqrt{x-1}-1}{\sqrt{x-1}+2}\] \[\left(g\circ f\right)(x)=\sqrt{\frac{x-1}{x+2}-1} \text{ or } \sqrt{-\frac{3}{x+2}}\]

Question 3

    1. Domain of \(f+g\), \(fg\) and \(f-g\) is \([-2,10)\). Domain of \(\frac{f}{g}\) is \([-2,1)\cup(1,10)\). Domain of \(\frac{g}{f}\) is \((-2,2)\cup(2,4)\cup(4,10)\).
    2. Domain of \(f+g\), \(fg\) and \(f-g\) is \([-1,0]\cup[1,5)\). Domain of \(\frac{f}{g}\) is \([-1,0]\cup[1,5)\). Domain of \(\frac{g}{f}\) is \([-1,0]\cup(1,5)\)
    3. Domain of \(f+g\), \(fg\) and \(f-g\) is \([-10,10)\). Domain of \(\frac{f}{g}\) is \([-10,-5)\cup(-5,5)\cup(5,10)\). Domain of \(\frac{g}{f}\) is \([-10,-1)\cup(-1,0)\cup(1,2)\cup(2,10)\)

Question 4

    1. \(x+x^2+\frac{1+\sqrt{x}}{x}\)
    2. \(\frac{1}{\sqrt{x}}+2x^3+4x^2+2x^2\).
    3. \(\sqrt{\frac{1}{x}+1}+x-\frac{1}{x}\)
    4. \(\frac{1}{\frac{1}{2x}}\) or \(2x\)
    5. \(\frac{1}{x^2+x+1}+\sqrt{x^2+x+1}\)

Question 5

    1. \(g=a+d\)
    2. \(g=b\cdot d\circ(a-c)\)
    3. \(g=\frac{a+c}{d\circ f}\)
    4. \(g=\frac{b-c-c}{f}+f\circ b+a\cdot d\)

Question 6

    1. \(\mathcal{R}(f)=(-\infty,0)\cup(0,\infty)\)
    2. \(\mathcal{R}(f)=(-\infty,2)\cup(2,\infty)\)
    3. \(\mathcal{R}(f)=[1,\infty)\)

Return

  • Return

© Copyright 2025 by the POC Writing Team: Bryan Carrillo, Yat Sun Poon, and David Weisbart. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the POC Writing Team.