Questions
Question 1
- Represent these sets as union of intervals
- \((2,4]\cup(3,5)\)
- \((-\infty,2]\cup(1,5]\)
- \([-5,6)\cup[6,5]\)
- \([-1,1]\cup \left((0,1)\cup(\frac{1}{2},2)\right)\)
- \([-1,1]\cap \left(-\infty,\frac{1}{2}\right)\)
- \([-1,1]\cap \left(\frac{1}{2},\infty\right)\)
- \([-4,\infty]\cap \left(-\infty,-5\right)\)
- \([-1,3]\cup \biggr((-\infty,5)\cap (2,\infty)\biggr)\)
Question 2
- Write out the solution set to the following inequalities as a union of intervals:
- \(x+1<4\)
- \(-x+1\leq 2\)
- \(2x+4\geq 3x+1\)
- \(x+4\geq 1\) or \(x-3<-11\)
- \(x+4\geq 1\) and \(x-3<-11\)
- \(3x+4\leq 10\) and \(2x-6>18\)
- \(2x+2\leq x\) and \(-2x-2>13\)
Answers
Question 1
- \((2,5)\)
- \((-\infty,5]\)
- \([-5,5]\)
- \([-1,2)\)
- \(\left[-1,\frac{1}{2}\right)\)
- \(\left(\frac{1}{2},1\right]\)
- \(\{\}\)
- \([-1,5)\)
Question 2
- \((-\infty,3)\)
- \([-1,\infty)\)
- \((-\infty,3)\)
- \((-\infty,-8)\cup[-3,\infty)\)
- \(\{\}\)
- \((-\infty,2]\cup (12,\infty)\)
- \(\left(-\infty,-\frac{15}{2}\right)\)